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... AN ANOMALY-DETECTION PROBLEM

Health monitoring / wearable devices:

Automatically analyze EGC tracings to
detect arrhythmias or incorrect device
positioning

D

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in
Proceedings of ECML-PKDD 2016, 16 pages
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| ... AN ANOMALY-DETECTION PROBLEM

Quality Inspection Systems: monltorlng the nanoflber productlon
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| ... AN ANOMALY-DETECTION PROBLEM

Quality Inspection Systems: monitoring the nanofiber production
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E ... AN ANOMALY-DETECTION PROBLEM

Detection of anomalies in chip production
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N| ... AN ANOMALY-DETECTION PROBLEM

Detect anomalous patterns in the layout of defective chips.

These might indicate issues

. - and malfunctioning
: : . in the production
process.




... AN ANOMALY-DETECTION PROBLEM

Fraud detection in streams of credit card transactions
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages
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N ... A CHANGE-DETECTION PROBLEM

Environmental Monitoring

A sensor network monitoring
rock faces: detecting changes in
the waveforms that are
recorded by MEMS sensors in
network units.
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C. Alippi, G. Boracchi, B. Wohlberg "Change Detection in Streams of Signals with Sparse Representations" in Proceedings of
IEEE ICASSP 2014, pp 5252 - 5256



.. A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

flow m/s

I I I I I I I I I
200 400 600 800 1000 1200 1400 1600 1800 2000

time

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346
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| ... A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

Similar problems arise in other critical infrastructure monitoring
scenarios
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G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



.. A CHANGE-DETECTION PROBLEM

Time-series (including financial ones) are typically subject to
changes, as the data-generating process evolves over time.
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 G.J. Ross, D.K. Tasoulis, N.M. Adams "Nonparametric monitoring of data streams for changes in location and scale”
Technometrics 53 (4), 379-389, 2011




.. A CHANGE-DETECTION PROBLEM

Learning problems related to predicting user preferences /
interests, such as:

e Recommendation systems
e Spam / email filtering

Changes arise when users change their own preferences.

Changes have to be detected to update the system accordingly

Trash

Spam Classification

Alippi, C., Boracchi, G., Roveri, M. “Just-in-time classifiers for recurrent concepts”. IEEE TNNLS, 24(4), 620-634 (2013).

Gama, )., Zliobaite, ., Bifet, A., Pechenizkiy, M., Bouchachia, A. "A survey on concept drift adaptation". ACM Computing
Surveys (CSUR), 46(4), 44. (2014)
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| PRESENTATION OUTLINE

Part1, in the “Random Variable” world:
- Problem formulation and performance measures

- Anomaly/Change Detection in the ideal conditions

- Anomaly Detection in realistic conditions

- Change Detection in realistic conditions

« Monitoring high-dimensional data: detectability loss
- Best Experimental Practices

Part2, out of the “Random Variable” world:
- Anomaly/Change Detection for Signals and Images
- Anomaly/Change detection using learned models

- I POLITECNICO DI MILANO




DISCLAIMERS

| I
In change detection, | will mainly focus on datastreams, which do
not have a fixed length and that have to be analyzed while data
are being received.

| am mainly considering numerical data. In some cases,
extensions apply to categorical or ordinal ones.

| refer to either changes/anomalies according to my personal
experience in the applications | have been addressing.

For a complete overview on change/anomaly algorithms please
refer to surveys reported below.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.



N In The "Random Variable" World

Observations are i.i.d. realizations of a random variable
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The Problem Formulation

Anomaly / Change Detection Problems
in a Statistical Framework
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| ANOMALIES

“Anomalies are patterns in data that do not conform to a well
defined notion of normal behavior”
Thus:
e Normal data are generated from a stationary process Py
e Anomalies are from a different process P, + Py

Examples:
e Frauds in the stream of all the credit card transactions
e Arrhythmias in ECG tracings
e Image regions that do not conform a reference pattern

Anomalies might appear as spurious elements, and are typically
the most informative samples in the stream

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.



| ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a datastream
{x(t), t =1ty ..}, x(t) e R?

where x(t) are realizations of a random variable having pdf ¢,,
and detect those points that are outliers i.e.,

¢o normal data
N x(t) {qbl anomalies ’
Po ¢1 do
A
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|THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 27, No. 3 (1978), pp. 242-250




E——
|THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)
The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

|
Percentage (n=13,634)
Po

20r

\\\\\\\\\\\\\\\\\\

10F

/
Hadlum
m/// H ;I.um
a
/Nor, al “«The
/ limit"™
30 35 40 4 50 Week

Fi1c. 1. Distribution of human gestation periods.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 27, No. 3 (1978), pp. 242-250




S

HE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)
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| PROCESS CHANGES

Normal data are generated in stationary conditions, i.e. are i.i.d.
realizations of a process Py

After the change, data are generated from a different process
Ps + Py, which persists over time

Examples:

e Quality inspection system: faults producing flawed
components

e Environmental monitoring: persistent changes in the
morphology of measured signals
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| CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,...}, x(t) € R? of realizations of a
random variable, and detect the change-point 7,

) t<Tt in control state
X(t) ~ 0 )
¢®; t=71 outofcontrolstate

where {x(t), t < t} are i.i.d. and ¢y # ¢,

We denote such change as: ¢, = ¢4
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Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,...}, x(t) € R? of realizations of a
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Here are data from an X-ray monitoring apparatus.

There are 4 changes ¢, = ¢1 = ¢, = P53 = ¢, corresponding to
different monitoring conditions and/or analyzed materials
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| PROCESS CHANGES VS ANOMALIES

Not all anomalies are due to process changes
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| PROCESS CHANGES VS ANOMALIES

Not all process changes result in anomalies

N 4
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THE ANOMALY / CHANGE DETECTION PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a
model explaining normal ones

Anomalies in data translate to significant information

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.
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| THE ANOMALY / CHANGE DETECTION PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a
model explaining normal ones

Anomalies in data translate to significant information

Change-detection problem:

Given the previously estimated model, the arrival of new data

invites the question: “Is yesterday’s model capable of explaining
today’s data?”

Detecting process changes is important to understand the
monitored phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.
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| THE TYPICAL SOLUTIONS

Most algorithms are composed of:

o A statistic that has a known response to normal data (e.g.,
the average, the sample variance, the log-likelihood, the
confidence of a classifier, an “anomaly score”...)

A decision rule to analyze the statistic (e.g., an adaptive
threshold, a confidence region)

- I POLITECNICO DI MILANO
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| THE TYPICAL SOLUTIONS

N 4
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| THE TYPICAL SOLUTIONS
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| THE TYPICAL SOLUTIONS

Anomaly-detection algorithms:

Statistics and decision rules are “one-shot”, analyzing a set of
historical data or each new data (or chunk) independently

Change-detection algorithms:

Statistics and decision rules are sequential, as they make a
decision considering all the data received so far

- I POLITECNICO DI MILANO




Performance Measures

How to assess performance of
change/anomaly detection algorithms
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| ANOMALY-DETECTION PERFORMANCE

Anomaly detection performance:

#{anomalies detected}

e True positive rate: TPR = w{anomalies}

#{normal samples detected}

e False positive rate: FPR = #{normal samples}

You have probably also heard of
 False negative rate (or miss-rate): FNR =1 — TPR
e True negative rate (or specificity): TNR = 1 — FPR

#{anomalies detected}
#{detections}

o Recall on anomalies (or sensitivity, hit-rate): TPR

e Precision on anomalies:

- I POLITECNICO DI MILANO
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| ANOMALY-DETECTION PERFORMANCE

There is always a trade-off between TPR and FPR (and similarly
for derived quantities), which is ruled by algorithm parameters

- I POLITECNICO DI MILANO
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| THE TYPICAL SOLUTIONS

By changing y it is possible to achieve different detection
performance (e.g. more true positive, more false positives)

decision rule: S(x) >y

4 statistic
14 ﬁ \

I VAN -

Nl



| THE TYPICAL SOLUTIONS

By changing y it is possible to achieve different detection

performance (e.g. more true positive, more false positives)

decision rule: S(x) >y
A
y \
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| ANOMALY-DETECTION PERFORMANCE

There is always a trade-off between TPR and FPR (and similarly
for derived quantities), which is ruled by algorithm parameters

Thus, to correctly assess performance it is necessary to consider
at least two indicators (e.g., TPR, FPR)

Indicators combining both TPR and FPR:

#{anomalies detected} + #{normal samples not detected}

Accur =
ccuracy #{samples}

2#{anomalies detected}

F1 re =
Score #{detections} + #{anomalies}

These equal 1 in case of “ideal detector” which detects all the
anomalies and has no false positives

- I POLITECNICO DI MILANO




| ANOMALY-DETECTION PERFORMANCE
|

Comparing different methods might be tricky since we have to
make sure that both have been configured in their best conditions

Testing a large number of parameters lead to the ROC (receiver

operating characteristic) curve

The ideal detector would achieve:
e« FPR = 0%,
e« TPR = 100%

Thus, the closer to (0,1) the better 3

TP

The largest the Area Under the
Curve (AUC), the better

The optimal parameter is the one
yielding the point closest to (0,1)

1

0.8

[an)
—

6

0.4F

021

(FPR,TPR) for a
specific parameter

—— STSIM
AUC = 0.619
Coding
AUC = 0.812
Variance
AUC = 0.775
e (Gradient
AUC = 0.704
—— Grad & Var
AUC = 0.796
mm Proposed
AUC = 0.926
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| CHANGE-DETECTION PERFORMANCE

In a sequential monitoring scenarios, performance are assessed in
terms of the Average Run Length.

In particular, we denote by T the detection time and define
ARLy = E[T | ¢,]

which is the expected number of samples before a false alarm and
ARL, = E[T | 4]
which is the expected delay for a detection

ARL, and ARL; still depend on the algorithm parameters.

In particular, one configures the CDT to operate at a given ARL,

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"
Technometrics, 53(4), 379-389, 2012.
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| CHANGE-DETECTION PERFORMANCE

Unfortunately, it is not always possible to compute ARL, and/or
ARL4, in particular for nonparametric CDTs.

Then, one resorts to performing several simulations on finite
sequences with a change at a known location 7, and computing

The detection delay,
DD =E|T—7|T =1, ¢,]
X

and
FPR — #{normal sequences where a change was detected}
- #{normal sequences}
#{sequences where change was not detected

#{changed sequences}

which are defined as in the anomaly detection case, and here
depend on the sequence length
.

POLITECNICO DI MILANO
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| CHANGE-DETECTION PERFORMANCE

These figures of merit also depend on algorithm parameters.

To perform a fair comparison among different methods one can:
e Generate long enough sequences to have FNR = 0%
e Consider few parameters settings
e Draw FPR-DD curves (similar to ROC): the lower the better

FPR vs DD
2500
-e—=HCDT
=3 Single-layered CDT
2000 R 25th 75th percentiles HCDT
\: 25th, 75th percentiles CDT
3 1500 (=2
1000
500
0 0.2 04 0.6 0.8



Anomaly/Change Detection
in the Ideal Settings

..when ¢, and ¢4 are known
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| ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Assume data are generated from a parametric distribution ¢g and
formulate the following hypothesis test
HO:H — 80 VS Hl: 9 — 91

According to the Neumann Pearson lemma, the most powerful
statistic to detect changes is the likelihood ratio

¢1(x)
$o(x)

and the detection rule is A(x) > y, where y is set to control the
false alarm rate (type | errors of the test).

A(x) =




| ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Outliers can be detected by a threshold on A(x)
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| THE CUSUM TEST ON THE LIKELIHOOD RATIO

CUSUM involves the calculation of a CUmulative SUM, which
makes it a sequential monitoring scheme.

It can be applied to the log-likelihood ratio:

. $1(x)\ (<0 when ¢y(x) > ¢;(x)
log(A(x)) = log (qbo(x)> B {> 0 othc:rwise :

The CUSUM statistic is:
S(t) = max (o, S(t—1) + log(A(x(t))))

And the decision rule is

St)>vy

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993

Page, E. S. "Continuous Inspection Scheme". Biometrika. 41 (1/2): 100-115 (June 1954).
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| CUSUM TEST
|
Outliers can be detected by a threshold on A(x)
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| PARAMETRIC SEQUENTIAL MONITORING

Quickest Change-Point Detection:

e Detection policies that minimize the expected delay to
detection, subject to a fixed ARL,.

e The CUSUM test is the optimal change-detection test (CDT)
when minimizing the maximum delay (at a given ARL,).

e Other procedures are optimal if we use a different measure
for the detection delay or different prior information

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993

A. Polunchenko and A. Tartakovsky, “State-of-the-art in sequential change-point detection,” Methodology and Computing in
Applied Probability, vol. 14, no. 3, pp. 649-684, 2012




Anomaly Detection:
More Realistic Settings

..anomaly detection when ¢, and ¢, are unknown
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| DATA DISTRIBUTION IS UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



I
| SUPERVISED ANOMALY DETECTION - SOLUTIONS

In supervised methods training data are annotated and divided in
normal (+) and anomalies (—) :

TR = {(x(¢t), y(1)), t<tg,x€RYLye€E{+ -1}
Solution:
e Train a two-class classifier to distinguish normal vs
anomalous data.
During training:
e Learn a classifier X from TR.
During testing:

o compute the classifier output K (x) / set a threshold on the
posterior ps(—|x) / select the k —most likely anomalies

- I POLITECNICO DI MILANO
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| SUPERVISED ANOMALY DETECTION - CHALLENGES

These classification problems are challenging because these
anomaly-detection settings typically imply:

e Class Imbalance: Normal data far outhnumber anomalies

e Concept Drift: Anomalies might evolve over time, thus the
few annotated anomalies might not be representative of
anomalies occurring during operations

o Selection Bias: Training samples are typically selected
through a closed-loop and biased procedure. Often
annotation is performed by controlling the detected
anomalies, and this biases the selection of training samples.

- I POLITECNICO DI MILANO




SUPERVISED ANOMALY DETECTION - AN EXAMPLE

|
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages




| THE TERMINAL
|

— Terminal

Purchase



E——
_LI'HE TERMINAL
|

Acceptance checks like:
e Correct PIN
e Number of attempts
e Card status (active, blocked)
e Card balance / availability

are immediately performed.

These checks are done in real time, and preliminary filter our
purchases: when these checks are not satisfied, the
card/transaction can be blocked.

Otherwise, a transaction request is entered in the system that
include information of the actual purchase:

e transaction amount, merchant id, location, transaction
type, date time, ..



BLOCKING RULES

Terminal

Purchase
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|TRANSACT|ON BLOCKING RULES

Association rules (if-then-else statements) like*

IF Internet transactions AND compromised website THEN deny the
transaction

These rules:

e are expert-driven, designed by investigators

e involves quite simple expressions with a few data
e are easy to interpret

e have always «deny the transaction» as statement
e are executed in real time

All the transaction RX passing these rules are authorized
transactions and further analyzed by the FDS

(*) Transaction blocking rules are confidential and this is just a reasonable example
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J:EATU RE AUGMENTATION
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A feature vector x is associated to each authorized transaction.

The components of x include data about the current transaction
and customary shopping habits of the cardholder, e.g.:

e the average expenditure

the average number of transactions per day

the cardholder age

the location of the last purchases

. .
and are very informative for fraud-detection purposes

Overall, about 40 features are extracted in near-real time.

- I POLITECNICO DI MILANO
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| SCORING RULES

Scoring rules are if-then-else statements that:

are being processed in near-real time
are expert-driven, designed by investigators.
Operate on augmented features (components of x)

Assign a score: the larger the score the more risky the
transaction (an estimate of the probability for x to be a
fraud, according to investigator expertise)

Feature vector receiving large scores are alerted
Are easy to interpret and are designed by investigators
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| SCORING RULES

Examples® of scoring rules might be:

e [F previous transaction in a different country AND less than
2 hours since the previous transaction, AND operation using
PIN THEN fraud score = 0.95

e |[F amount > average of transactions + 30 AND country is a
fiscal paradise AND customer travelling habits low THEN
fraud score = 0.75

(*) Scoring rules are confidential and these are just a reasonable examples
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| EXPERT-DRIVEN VS DATA-DRIVEN MODELS

Scoring rules are an expert-driven model, thus:
e (Can detect well-known / reasonable frauds
e Involve few components of the feature vector
o Difficult to exploit correlation among features

- I POLITECNICO DI MILANO




I
| EXPERT-DRIVEN VS DATA-DRIVEN MODELS

Scoring rules are an expert-driven model, thus:
e (Can detect well-known / reasonable frauds
e Involve few components of the feature vector
o Difficult to exploit correlation among features

Fraudulent patterns can be directly learned from data, by means
of a data-driven model (DDM). This should:
o Simultaneously analyze several components of the feature
vector
e Uncover complex relations among features that cannot be
identified by investigator

These relations can be meaningful for separating frauds from
genuine transactions

- I POLITECNICO DI MILANO
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| THE CLASSIFIER IN THE FDS

A classifier K is learned from a training set that contains:
labeled feature vectors

TR = {(x,9);,i=1,..., N}

where the label y = {+, -}, i.e., {«fraud», «genuine»}

In practice, the classifier X then can assign a label, + or — to
each incoming feature vector x

X — K — K(x) € {+, -}

K considers transactions labeled as ‘+’ as frauds

- I POLITECNICO DI MILANO




| ALERTS REPORTED TO INVESTIGATORS

It is not feasible to alert all transactions labeled as frauds
Only few transactions that are very likely to be frauds can be
alerted.

Thus, the FDS typically consider ps(+|x), an estimate of the
probability for x to be a fraud according to K

x — | K | py(+]x)

and only transactions yielding ps(+|x) = 1 raise an alert

- I POLITECNICO DI MILANO
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| INVESTIGATORS

Investigators are professionals that are experienced in analyzing
credit card transactions:

o they design blocking/scoring rules

o they call cardholders to check whether alerts correspond to
frauds

e as soon as they detect a fraud, they block the card
e they annotate the true label of checked transactions

The labels associated to transactions comes in the form of
feedbacks and can be used to re-train/update K

Given the limited number of investigators, the large number of
transactions, the multiple sources of alerts, etc ... it is important
to provide very precise alerts

- I POLITECNICO DI MILANO
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| SUPERVISED ANOMALY DETECTION - AN EXAMPLE

This is what typically happens in fraud detection.

Sampling Selection Bias:

e Only alerted / reported transactions are controlled and
annotated

e 0ld transactions that have not been disputed are considered
genuine transactions
Class Imbalance:
e Frauds are typically less than 1% of genuine transactions

Concept Drift:
e Fraudster always implement new strategies

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages




| SUPERVISED ANOMALY DETECTION - AN EXAMPLE

Since feedbacks and delayed samples are very different, a better
solution for training the classifier K consists in:

e Training a classifier F on feedbacks
e Training a classifier D on delayed samples
e Detect frauds by aggregating their posteriors

pyc(—1x) = a pr(—|x) + (1 — a)pp(—|x)

Caveat: When testing a fraud-detection algorithms the alert-
feedback interaction should be considered.

Few dataset provided (see below).

A. Dal Pozzolo, 0. Caelen, R. A. Johnson, and G. Bontempi. “Calibrating probability with undersampling for unbalanced
classification”. In 2015 Symposium on Computational Intelligence and Data Mining. IEEE, SSCI 2015.
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| DATA DISTRIBUTION IS UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| SEMI-SUPERVISED ANOMALY DETECTION

In semi-supervised methods the TR is composed of normal data
TR = {x(t),t < ty,x ~ Py}

Very practical assumptions:
e Normal data are often easy to gather

e Anomalous data are difficult/costly to collect/select and it
would be difficult to gather a representative training set

 New anomalies might appear than those ones in TR

All in all, it is often safer to detect any data departing from the
normal conditions

Semi-supervised anomaly-detection methods are also referred to
as novelty-detection methods

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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| DENSITY-BASED METHODS

Density-Based Methods: Normal data occur in high probability
regions of a stochastic model, while anomalies occur in the low
probability regions of the model

During training: ¢, can be estimated from the training set
TR = {x(t),t < ty,x ~ Py}
o parametric models (e.g., Gaussian mixture models)
e nonparametric models (e.g. KDE, histograms)
During testing:
 Anomalies are detected as data yielding ¢o(x) < 7

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| DENSITY-BASED METHODS

Advantages:

o q30(x) yields a confidence associated to each decision

o If the density estimation process is robust to outliers, it is
possible to tolerate few anomalous samples in TR

e Histograms are simple to compute in relatively small
dimensions

Challenges:

e Fitting complex models in high-dimensional data might be
challenging

o Histograms traditionally suffer from curse of dimensionality
when d increases

e Often the 1D histograms of the marginals are monitored,
ignoring the correlations among components

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t ¢, allow to address
anomaly-detection problem in multivariate data

1. During training, estimate ¢, from TR

2. During testing, compute
L(x(@®)) = log($o(x(t)))
3. Monitor {£(x(¢)), t =1,.

x(t)

(x(®)

s
o

Nl 4




DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

| I
Monitoring the log-likelihood of data w.r.t ¢, allow to address
anomaly-detection problem in multivariate data

1. During training, estimate ¢, from TR
2. During testing, compute

£(x(1)) = log(o(x(1)))
3. Monitor {£(x(¢)), t=1,...}

This is quite a popular approach in either anomaly-detection and
sequential monitoring algorithms

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of
International Conference on Knowledge Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate
individual observations," lIE transactions, vol. 32, no. 6, 2000.

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAIl 2016, New York, USA, July 9 - 13



DOMAIN-BASED METHODS

|| L I
Domain-based methods: Estimate a boundary around normal
data, rather than the density of normal data.

A drawback of density-estimation methods is that they are meant
to be accurate in high-density regions, while anomalies live in
low-density ones.

One-Class SVM are domain-based methods defined by the normal
samples at the periphery of the distribution.

Schaolkopf, B., Williamson, R. C., Smola, A. ., Shawe-Taylor, J., Platt, ]. C. "Support Vector Method for Novelty Detection". In
NIPS 1999 (Vol. 12, pp. 582-588).

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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| ONE-CLASS SVM (SCHOLKOPF ET AL. 1999)

Idea: define Boundaries by estimating a binary function f that
captures regions of the input space where data-density is large.

As in support vector methods, f is defined in the feature space
F and decision boundaries are defined by a few support vectors
(i.e., a few normal data).

Let Y (x) the feature associated to x, f is defined as
f(x) = sign(< w,p(x) > —p)

Where the hyperplane w and the margin p > 0 is estimated to
separate normal data from the origin

A linear separation in the feature space corresponds to a variety
of nonlinear boundaries in the input space.

Scholkopf, B., Williamson, R. C., Smola, A. ]., Shawe-Taylor, |., Platt, J. C. "Support Vector Method for Novelty
Detection". In NIPS 1999 (Vol. 12, pp. 582-588).
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| ONE-CLASS SVM (TAX AND DUIN 1999)

Boundaries of normal region can be also defined by an
hypersphere that, in the feature space, encloses most of the
normal data.

Similar detection formulas hold, measuring the distance in the
feature space between the sphere center and ¥ (x) for x € TR.

The function is always defined by a few support vectors.

Remarks: In both one-class approaches, the amount of samples
that falls within the margin (outliers) is controlled by
regularization parameters.

This parameter regulates the number of outliers in the training set
and the detector sensitivity.

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
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| DATA DISTRIBUTION IS UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| UNSUPERVISED ANOMALY-DETECTION

The training set TR might contain both normal and anomalous
data. However, no labels are provided

TR = {x(t),t < t,}
Underlying assumption: Anomalies are rare w.r.t. normal data TR

One in principle could use:

e Density/Domain based methods that are robust to outliers
can be applied in an unsupervised scenario

e Unsupervised methods can be improved whenever labels
are available

- I POLITECNICO DI MILANO




DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

cf}“

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Zhao, M., Saligrama, V. “Anomaly detection with score functions based on nearest neighbor graphs”. NIPS 2009
A. Zimek, E. Schubert, H. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” SADM 2012



| DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
e the above distance considered relatively to neighbors

QQ ® .:?.

°. .‘0. o f_,.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



B
| DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
e the above distance considered relatively to neighbors

e whether they do not belong to clusters, or are at the cluster

periphery, or belong to small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



Change Detection:
More Realistic Settings

..change detection when ¢, and ¢, are unknown
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| CHANGE DETECTION APPROACHES

Parametric Settings:

* The Change-Point Formulation

Non-parametric Settings:

* The Change-Point Formulation

* Change-Detection by Histograms

e Change-Detection by Monitoring Features

* Hierarchical Change-Detection Tests

- I POLITECNICO DI MILANO
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| CHANGE DETECTION IN PARAMETRIC SETTINGS: CPM

Parametric settings:

¢, and ¢, are known up to their parameters (6, and 6,), thus
the change ¢, — ¢, corresponds to a change 6, — 6,

Change-Point Methods (CPM) are sequential monitoring schemes
that extend traditional parametric hypothesis tests

These assumptions hold in some quality control application, but
sometimes the change is unpredictable (e.g. 6, it is unknown)

The basic functioning of CPM is illustrated for offline monitoring,
but CMP can be iterated to perform to sequential monitoring.

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint
formulation” Technometrics 2005

Ross, G. ). “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-

1030, 2014




ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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Assume a sequence of 1000 points is given and we want to find
the change point 7 inside (offline analysis)
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ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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e Test a single point t to be a change point
e Split the dataset in two sets «before» and «after»

e Compute a test statistic I to determine whether the two
sets are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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e Test a single point t to be a change point
o Split the dataset in two sets «before» and «after»

o Compute a test statistic I to determine whether the two
sets are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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e Test a single point t to be a change point
o Split the dataset in two sets «before» and «after»

o Compute a test statistic I to determine whether the two
sets are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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e Test a single point t to be a change point
o Split the dataset in two sets «before» and «after»

o Compute a test statistic I to determine whether the two
sets are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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| ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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The point where the statistic achieves its maximum is the most
likely position of the change-point

As in hypothesis testing, it possible to set a threshold hygg for
Tmax 1000 DY setting to a the probability of type I errors.

The CPM framework can be extended to online monitoring, and in
this case it is possible to control the ARL

100 200 300 400 500 600 700 800 900 1000
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| CHANGE DETECTION APPROACHES

Parametric Settings:

* The Change-Point Formulation

Non-parametric Settings:

* The Change-Point Formulation

* Change-Detection by Histograms
e Change-Detection by Monitoring Features

* Hierarchical Change-Detection Tests
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| CPM IN NONPARAMETRIC SETTINGS

Both ¢, and ¢, are unknown, thus the change ¢, — ¢4 is
completely unpredictable

One viable option consists in using nonparametric statistics, like:

e Mann-Whitney,
e Mood,
e Lepage,
e Kolmogorov-Smirnov,
e Cramer von Mises,
which do not require any information about ¢, or ¢5.

Pro: CPMs do not require training samples
Cons: None of these statistic can be used on multivariate data.

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"
Technometrics, 53(4), 379-389, 2012.
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| CHANGE DETECTION APPROACHES

Parametric Settings:

* The Change-Point Formulation

Non-parametric Settings:

* The Change-Point Formulation

* Change-Detection by Histograms

e Change-Detection by Monitoring Features

* Hierarchical Change-Detection Tests
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CHANGE DETECTION BY MEANS OF HISTOGRAMS

Most often, a training set TR containing stationary data is
provided, as in semi-supervised anomaly detection methods.

The distribution of stationary data can be approximated by a
histogram ¢, estimated from TR

>

__________________ F

T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. “An information-theoretic approach to detecting changes in multi-
dimensional data streams”. Symposium on the Interface of Statistics, Computing Science, and Applications. 2006
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R Sebastiao | Gama P P Rodricues and 1l Bernardes “Monitorina incremental histoaram distribution for chanae detection
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| HISTOGRAMS

An histogram h° defined over the input domain X c R% is
h(X0) = {(Sk’p’(‘))}lc:L...,K

Where {S; }, is a disjoint covering of X', namely S, € X

USk = X and SjﬂSi = 51',]'
k

and py € [0,1] is an the probability (estimated from X) for a

sample drawn from ¢, to fall inside Sy, i.e.
o _ Mk
Pk N

and N = #X

There is quite a lot of freedom in designing {Sy }«
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| HISTOGRAMS YIELDING UNIFORM VOLUME

This is the most common way of constructing histograms.

Build a tessellation of supp(X) by splitting each component in g
equally sized parts.

This yields g hyper-rectangles {S} having the same volume

Add to the histogram a
region to gather points
that during operation,
won’t fall in supp(X)

SK=X,p2=O
being K = g% + 1

range(X,)

{

An example of 2D histogram g = 1/3

1
3




| HISTOGRAMS YIELDING UNIFORM DENSITY

Define the partition {S; }, in such
the uniform density, i.e.,

1
pp~— ,k

Such that each of the g% hyper- rectangles contains the /% points

same number of points

No need to consider a separate
region for X

This is an example of k-d
trees, there are many
alternatives...

a way that all the subsets have

An example of 2D histogram g = 1/3

Boracchi G., Cervellera C., and Maccio D. “Uniform Histograms for Change Detection in Multivariate Data" 1)CNN 2017
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| CHANGE DETECTION BY HISTOGRAMS: MONITORING SCHEME

Two major monitoring schemes using histograms:
e Likelihood-based methods
e Distance-based methods

whose applicability depends on the type of histogram

Pros: often histograms can be scanned very efficiently as binary
trees with splits over a single component

Cons: when d increases, some partitioning schemes are not viable
as they require g% bins. Need to move to a k-d tree or other
partitioning schemes

M. Muja and D. G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional Data". TPAMI, Vol. 36, 2014



| LOG-LIKELIHOOD - BASED MONITORING SCHEME

As in density-based methods, ¢, can be used to compute the
log-likelihood, which can be then monitored by univariate CDT

1. During training, estimate ¢, from TR

2. During testing, compute
L(x()) = log(do(x(t)))
3. Monitor {£(x(¢)), t =1, ...} which is discrete

x(t)

: £(x(®))

>
t

. 2V
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| DISTANCE - BASED MONITORING SCHEME

e

¢, can be used to monitor the datastream window-wise:
Crop a window W over the most recent data

Estimate 1 = {(Sk, Pic)},_, , from W
Compare ¢, and ¢, by a distance d between distributions

Monitor d (g, P1)
R B e
¢O | (¢0 ¢1) i ¢1

5 @

x(t)

i o




| DISTANCE - BASED MONITORING SCHEME

Example of distances d between distributions are:
e Kullback-Leibler divergence

o Total variation distance, Pearson chi-square test
e Kolmogorov-Smirnov, Cramer-Von-Mises distance
e Kernel methods



I
| DISTANCE - BASED MONITORING USING HISTOGRAMS

1. Compute the probabilities for an incoming batch W over {S;}
#{xi (S Sk N W}
1%

i =

2. Compare h® and h" by a suitable distance, e.g.

1
dry(R°, hY) = 22 Ipp —pY| (total variation)
K

or

— bR —Pr |
dps(h”,h") =v 5 (Pearson)
k Pk

3. Run an HT on d; (having estimated its p-values empirically)
or dp (this follows a y-square distribution)
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DISTANCE - BASED MONITORING SCHEME

Thresholding the distance is the typical stopping rule. Thresholds:

o are defined from the empirical distribution of d(¢o, 1),
which is computed through a Boosting procedure.

e are analytically provided, as in case the of Pearson statistic

Similar approaches rules can be used to compare features
extracted from ¢, and ¢ in different data-windows.

Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K. "An information-theoretic approach to detecting changes in multi-
dimensional data streams". Symp. on the Interface of Statistics, Computing Science, and Applications, 2006.

Ditzler G., Polikar R., “Hellinger distance based drift detection for nonstationary environments”, IEEE SSCI 2011.
Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017
Sebastiao R., Gama ). Mendonga T. "Fading histograms in detecting distribution and concept changes" ||DSA, 2017
Bu L., Alippi C., Zhao D. “A pdf-free change detection test based on density difference estimation” TNNLS 2016

~S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-series data by relative density-ratio
estimation,” Neural Netw., vol. 43, pp. 72-83, Jul. 2013
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| CHANGE DETECTION APPROACHES

Parametric Settings:

* The Change-Point Formulation

Non-parametric Settings:
* The Change-Point Formulation

* Change-Detection by Histograms

e Change-Detection by Monitoring Features

* Hierarchical Change-Detection Tests
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| CHANGE DETECTION BY MONITORING FEATURES

Most often, a training set TR containing stationary data is
provided, as in semi-supervised anomaly detection methods.

Extract indicators (features), which are expected to change when

®o — ¢4 and which distribution is known under ¢,

I I

N\ I |
NI [ o o ° °
= l l

1 1

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” I)JCNN 2010 (pp. 1-7).

Nl




NONPARAMETRIC SETTINGS: SEQUENTIAL MONITORING

Examples of decision rules for features
e CPM, which can control the ARL,
e NP-CUSUM, to detect changes in the data expectation
e ICI rule, to detect changes in the data expectation

Unfortunately most nonparametric statistics and the decision rules
do not apply to multivariate data.

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"
Technometrics, 53(4), 379-389, 2012.

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” Proceedings of IJCNN 2010 (pp. 1-7).
Tartakovsky, A. G., Veeravalli, V. V. "Change-point detection in multichannel and distributed systems". Applied Sequential
Methodologies: Real-World Examples with Data Analysis, 173, 339-370, 2004

Alippi C., Boracchi G. and Roveri M. "Ensembles of Change-Point Methods to Estimate the Change Point in Residual
Sequences" Soft Computing, Springer, Volume 17, Issue 11 (2013)
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| OUTLINE

Parametric Settings:

* The Change-Point Formulation

Non-parametric Settings:
* The Change-Point Formulation
* Change-Detection by Histograms

e Change-Detection by Monitoring Features

* Hierarchical Change-Detection Tests
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| HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.




HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.

This results in two-layered (hierarchical) CDTs

Hierarchical Change-Detection Test

Offline HT is activated to validate [ J Estimated Change Point 7
. Validation Qutcome (Y/N)
any detection

Detection Time | T Post-Detection
Reconfiguration
H ew Training Se R
Online CDT detects process Detection Layer New Training Set

changes in the input datastream

Change Indicators | x(t)

[

_—

Datastream | s(t) The Hierarchical CDT is
automatically reconfigured
Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13




HIERARCHICAL CHANGE-DETECTION TESTS

| I
Hierarchical CDTs can achieve a far more advantageous trade-off
between false-positive rate and detection delay than their single-
layered, more traditional, counterpart.

FPR vs DD
2500
-= HCDT
=3 Single-layered CDT
2000 R e 25th 75th percentiles HCDT
>
% \:'\ rzos5 |~ 25th, 75th percentiles CDT
R :". i i
= 1500 [+\=:
2
L
©
0 1000
500 5 5 5 '
0 0.2 04 0.6 0.8

False alarm rate

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13



Monitoring High-Dimensional Data

Change/anomaly in streams of high-dimensional
random vectors
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. WHEN DATA “ARE MANY”

When n (or the data throughput) grows:

e Memory issues: not feasible to store all the data in memory
Computational issues: algorithms should be O(1), and
single-pass

e Having a lot of training samples is good!

Thus, there is need for

e approximated statistics
e Incremental formulas, dataset pruning/summarization

=
—
d =

Sebastiao R., Gama ). Mendonca T. “Fading histograms in detecting distribution and concept changes" International Journal of
Data Science and Analytics, 2017




.. WHEN DATA “ARE LARGE”

When d grows:

Memory issues: not feasible to store many data in memory
Difficult to find a model ¢,, many training samples needed
Number of irrelevant component might increase
Distance-based methods are difficult to tune

Combinatorial growth of the number of subspaces
Data-visualization issues

Detectability loss

A 4

=
—
d =

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.



Detectability loss in
high-dimensional data

How data dimension affects monitoring the Log-likelihood

- C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAl 2016, New York, USA, July 9 - 13
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| OUR GOAL

Study how the data dimension d influences the
change detectability, i.e., how difficult is to solve
change/anomaly detection problems

Po P1
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Study how the data dimension d influences the
change detectability, i.e., how difficult is to solve
change/anomaly detection problems
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| OUR GOAL

Study how the data dimension d influences the
change detectability, i.e., how difficult is to solve

change/anomaly detection probleg)?s
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B
| OUR APPROACH

To study the impact of the sole data dimension d in change-
detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well
correlates with traditional performance measures

3. Define a measure of change magnitude that refers only to
differences between ¢, and ¢4

POLITECNICO DI MILANO
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| OUR RESULT

We show there is a detectability loss problem, i.e. that change
detectability steadily decreases when d increases.

Detectability loss is shown by:
e Analytical derivations: when ¢, and ¢, are Gaussians

e Empirical analysis on real data: measuring the power of
hypothesis tests

- I POLITECNICO DI MILANO
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| ROADMAP TO DETECTABILITY LOSS

Preliminaries:

The change-detection approach

e The measure of change detectability
e The change magnitude

The detectability loss
e Analytical results
e Empirical analysis
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| HOW? MONITORING THE LOG-LIKELIHOOD

A typical approach to monitor the log-likelihood

1. During training, estimate ¢, from TR

2. During testing, compute
L(x(t)) = log(do(x(t)))
3. Monitor {£(x(¢)), t=1,...}

25

x(t)

#

(x(®)

s

>
t
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| ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change-detection approach

The measure of change detectability

e The change magnitude

The detectability loss
e Analytical results
e Empirical analysis
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| THE CHANGE DETECTABILITY
|

The Signal to Noise Ratio Of the change
2
E [L(x)] — E |L(x
( E0[ ( )] 51[ ( )])

var [L(x)] + Jar [£(x)]

bo

SNR(¢o = ¢1) =

measures the extent to which ¢, — ¢, is detectable by statistical
tools designed to detect changes in E[L(x)]
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| ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change-detection approach
e The measure of change detectability

e |The change magnitude

The detectability loss
e Analytical results
e Empirical analysis
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| THE CHANGE MAGNITUDE

We measure the magnitude of a change ¢, — ¢, by the
symmetric Kullback-Leibler divergence

SKL(¢g, ¢1) = KL(¢pg, d1) + KL(¢1, o) =

_ ¢o(x) ¢1(x)
_ f log ( 5 (x)) o (x)dx + f log ( 5 m) b, (x)dx

In practice, large values of sKL(¢, ¢,) correspond to changes
¢, — ¢,that are very apparent, since sKL(¢,, ¢,) identifies an
upperbound of the power of hypothesis tests designed to detect

either ¢y = ¢, or o1 = Py

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting changes in multi-
dimensional data streams” In Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006



B
| OUR APPROACH

To study the impact of the sole data dimension d in change-
detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well
correlates with traditional performance measures

3. Define a measure of change magnitude that refers only to
differences between ¢, and ¢4

Our goal (reformulated):

Studying how the change detectability SNR(¢p, — ¢,) varies in
change-detection problems that have

o different data dimensions d
e constant change magnitude sKL(¢o, ¢1)
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| ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change-detection approach
e The measure of change detectability
e The change magnitude

The detectability loss

e |Analytical results

e Empirical analysis
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| THE DETECTABILITY LOSS

Theorem

Let pg = N (Ug, Zo) and let ¢, (x) = ¢po(Qx + v) where
Q € R4 and orthogonal , v € R%, then

C
SNR($o — ¢1) < =

Where C is a constant that depends only on sKL(¢q, )

- C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAl 2016, New York, USA, July 9 - 13
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| THE DETECTABILITY LOSS: REMARKS

Theorem

Let pg = N (Ug, Zo) and let ¢, (x) = ¢po(Qx + v) where
Q € R4 and orthogonal , v € R%, then

C
SNR($o > ¢1) <

where C is a constant that depends only on sKL(¢,, ¢1)

Remarks:

e Changes of a given magnitude, sKL(¢,, ¢;), become more
difficult to detect when d increases

e DL does not depend on how ¢, changes
e DL does not depend on the specific detection rule
« DL does not depend on estimation errors on ¢,
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| THE DETECTABILITY LOSS: THE CHANGE MODEL

Theorem

Let oo = N (U, Zo) and let|p,(x) = ¢o(Qx + v) Where
Q € R4 and orthogonal , v € R%, then

C
SNR($o > ¢1) <

where C is a constant that depends only on sKL(¢,, ¢1)
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| THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
e Changes in the location of ¢, (i.e, +v)




| THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
e Changes in the location of ¢, (i.e, +v)
e Changes in the correlation of x (i.e, Qx)




| THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
e Changes in the location of ¢, (i.e, +v)
e Changes in the correlation of x (i.e, Qx)

It does not include changes in the scale of ¢, that can be
however detected monitoring ||x||

b
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| THE DETECTABILITY LOSS: THE GAUSSIAN ASSUMPTION

Theorem

Let|po = N (1o, Zo)|and let ¢; (x) = Ppo(@x + v) where
Q € R**% and orthogonal , v € R%, then

C
SNR($o > ¢1) <

where C is a constant that depends only on sKL(¢,, ¢1)
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I
| THE DETECTABILITY LOSS: THE GAUSSIAN ASSUMPTION

Assuming ¢o = N (ug, Zg) looks like a severe limitation.
e Other distributions are not easy to handle analytically

e We can prove that DL occurs also in random variables
having independent components

e The result have been empirically confirmed in case of
approximations of L(-) typically used for Gaussian mixtures
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| ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change-detection approach
e The measure of change detectability
e The change magnitude

The detectability loss
e Analytical results

e |[Empirical analysis
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| THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

The data

x(t)

e Synthetically generate streams with different dimensions d

o Estimate ¢, by GM from a stationary training set

e In each stream we introduce ¢, — ¢, such that

$1(x) = $o(Qx +v) and sKL(¢o, ¢1) = 1

o Test data: two windows V, and V/; (500 samples each)

selected before and after the change.

Vo

Vq

N 4
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| THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

We measure the change-detectabiltity as:
o Compute L(po(x)) from V, and V;, obtaining W, and W,
e Compute a test statistic T (W, W;) to compare the two
e Detect a change by an hypothesis test
T(Wo,W1) s h
where h controls the amount of false positives
e Use the power of this test to assess change detectability

(x(®)

s
o

o
o

o
o
o

N 4
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| THE HYPOTHESIS TESTS POWER ON GAUSSIAN STREAMS

1 [

0.8

0.6

Power

0.4

0.2

Gaussians Remarks:

e ¢, is defined analytically

e The t-test detects changes in the
expectation of log(¢y(+))

e The Lepage test detects changes in
the location and scale of log(¢y(+))

Results

e The HT power decays with d: DL does
i t-test log(Bo()) not only concern the upperbound of

u SNR.
== Lepage log(¢p,(-)) oL i q imati but
B Lepage log(cf)o(-)) ° IS not due to estimation errors, ou

il I RN these make things worst.

e t-test log(ho ()

0
109 101 102

e Also the power of the Lepage HT
d decreases, which indicates that the
change is more difficult to detect

even when monitoring the variance
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Power

0.6 |

0.4

0.2 -

THE HYPOTHESIS TESTS POWER ON UCI DATASETS

Particle Wine

== {_test on Eu
—A— { test on L;
== [epage test on Lo
—B [epage test on f,;

Power
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THE HYPOTHESIS TESTS POWER ON PARTICLE DATASET

|
Particle
1 —~~
e {_test on L,
08l \ — A= {_test on Eg R
. =il= [epage test on Ly
T —B- Lepage test on E,;
0.6
—
o |
= |
O |
aw
0.4y
-\
\
0.2 \
| TR e
0

Remarks:

¢qis defined through CCM a framework
to control the change magnitude and

yield sKL(¢o, ¢1) = 1

do is a Gaussian Mixture where k is
selected by cross-validation

Approximated expression of L(:) to
prevent numerical approximations

Results:

DL occurs also in non-Gaussian data
approximated by GM

DL is clearly visible at quite a low
dimensions

D. Carrera, G. Boracchi Generating High-Dimensional Datastreams for Change Detection Big Data Research,
Elsevier, 17 pages, 2017 https://home.deib.polimi.it/carrerad/projects.html
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E_—
| A NOTE ON EXPERIMENTAL PRACTICES

To correctly assess the change-detection performance, in

particular when changing the input size, it is necessary to control
the magnitude of injected changes

Controlling the change magnitude provides results that are better
interpretable and reproducible.

D. Carrera, G. Boracchi Generating High-Dimensional Datastreams for Change Detection Big Data Research,
Elsevier, 17 pages, 2017 https://home.deib.polimi.it/carrerad/projects.html
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CCM: CONTROLLING THE CHANGE MAGNITUDE

Watch-out: Most of

experimental practices to — Swap

manipulate datastreams 10t g;ﬂ Offset

for change-detection  NP-CCM
purposes, lead to 103 == CCM

changes that steadily
increase with d

skL

102

101

1009

d

D. Carrera, G. Boracchi “Generating High-Dimensional Datastreams for Change Detection” Big Data Research,
Elsevier, 17 pages, 2017 https://home.deib.polimi.it/carrerad/projects.html
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