Image Analysis and
Computer Vision

Giacomo Boracchi
giacomo.boracchi@polimi.it
February 16" 2024

UEM, Maputo
https://boracchi.faculty.polimi.it

Giacomo Boracchi

mailto:giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

Course Slides

Slides can be found on my website

https://boracchi.faculty.polimi.it/

and follow Tutorials and Talks

https://boracchi.faculty.polimi.it/seminars.html

Giacomo Boracchi

https://boracchi.faculty.polimi.it/
https://boracchi.faculty.polimi.it/seminars.html

Colab Folder

In this folder you will find, regularly updated
notebooks

https://drive.google.com/drive/folders/10j9orb2

kKogKpLxca-uMejuesy-8RZeD

Notebooks require you to “fill in” some codes
or to extend codes we illustrate during
lectures to new data/new challenges

o

Giacomo Boracchi

https://drive.google.com/drive/folders/1Oj99rb2kKo4KpLxca-uMe7uesy-8RZeD
https://drive.google.com/drive/folders/1Oj99rb2kKo4KpLxca-uMe7uesy-8RZeD

Project Assignment

1. Implement an image classifier, based on hand crafted features for

the parcel dataset (see the colab script
2023_Lez_o3_handcrafted_feature_classifier_parcel.pynb in Lecture 3

folder)

2. Implement a deep neural network (CNN) alterative and train it using
data augmentation / transfer learning until you get to good
performance.

3. Train and test both solutions (make sure training and test set remain
separated). Show inference results on selected images

4. Send me a 1 page report (where you discuss what is your
contribution) and the Py notebook with the results already in.

Giacomo Boracchi

Convolutional Neural
Netwokrs

Giacomo Boracchi
giacomo.boracchi@polimi.it
February 14™ 2024

UEM, Maputo
https://boracchi.faculty.polimi.it

Giacomo Boracchi

mailto:giacomo.boracchi@polimi.it
https://boracchi.faculty.polimi.it/

The Feature Extraction
Perspective

Giacomo Boracchi

The Feature Extraction Perspective

Images can not be directly fed to a classifier

We need some intermediate step to:

 Extract meaningful information (to our understanding)
* Reduce data-dimension

We need to extract features:
 The better our features, the better the classifier

Giacomo Boracchi

The Feature Extraction Perspective

Input image

“wheel”

X € R?

‘ Feature Extraction Algorithm ‘
>
[T
>
Classifier (NN)

(d<<rxXc)

The Feature Extraction Perspective

Input image

$ “castle”

yEA

‘ Feature Extraction Algorithm ‘
>
>
Classifier (NN)

(d L1y XcCy)

Hand-Crafted Features

Giacomo Boracchi

Example of Hand-Crafted Features

Example of features:

Average height

Area (coverage with nonzero measurements)

Distribution of heights
Perimeter

ENVELOPE

Diagonals

10 20 30 40 50 60 70

DOUBLE

0.08

1 0.06

0.04

0.02

10 20 30 40

Giacomo Boracchi

Neural Networks

Input image

0.08

20

10.06

0.04 |j>

0.02

30

40

50

60

70

80

90

10 20 30 40

I]_ E]er XC1

‘ Feature Extraction Algorithm‘

input layer Hidden layer(s) Output Layer

Giacomo Boracchi

Input layer: Same size of the

Neural Networks foature vector

8 =

K ind

)

Input image

10 0.08

20

10.06

0.04 $

0.02

30

40

)

50

/\

A0S

60 ‘ (XX} oo (XX

70

80

90

X € R4 ’

input layer Hidden layer(s) Output Layer

Giacomo Boracchi

10 20 30 40

I]_ E]er XC1

‘ Feature Extraction Algorithm‘

Neural Networks

Input image

10 0.08

20
10.06

0.04 $

0.02

30

40

50

60

70

80

90

10 20 30 40

I]_ E]er XC1

Output layer: Same size
as the number of

Q classes

/Q P(l = "doub."|x)

‘JL ‘\\

VA i

LA g
VXl

‘ Feature Extraction Algorithm‘

input layer Hidden layer(s) Output Layer

Giacomo Boracchi

N eu ral N etWOrkS Hidden layers: arbitrary size

O

Input image

10 0.08

20

10.06

0.04 $

0.02

30

40

8 =

)

50

/\

A0S

60 \%K (XX eoo (XX

70

80

90

x € R4 Q Q

input layer Hidden layer(s) Output Layer

Giacomo Boracchi

10 20 30 40

I]_ E]er XC1

‘ Feature Extraction Algorithm‘

Image Classification by Hand Crafted Features

Input image

10

20

30

40

50 |

60

70

80

90

10 20 30 40

11 E]:er XC1

‘ Feature Extraction Algorithm‘

Hand Crafted Data Driven

Giacomo Boracchi

Hand Crafted Featues, pros:

* Exploit a priori / expert information

 Features are interpretable (you might understand why they are not
working)

* You can adjust features to improve your performance
* Limited amount of training data needed
* You can give more relevance to some features

Giacomo Boracchi

Hand Crafted Featues, cons:

* Requires a lot of design/programming efforts

 Not viable in many visual recognition tasks (e.g. on natural images)
which are easily performed by humans

* Risk of overfitting the training set used in the design
* Not very general and "portable”

Giacomo Boracchi

Data-Driven Features

Giacomo Boracchi

Data-Driven Features

\
9o

Input image

Y

IIII "k‘/ Q

[

RS by

AN 7 Ly
Vb hoN
VAYT (RN
VIVAE Voo
(T SRV \ A\

(XX} XX (XX}
[2
AR Y
AR i y
£y i
oo AR

i \i

f \i

i A

f 4

i 4

"

Feature Extraction
s

Data Driven Data Driven

Convolutional Neural
Networks

Setting up the stage

Local Linear Filters

Linear Transformation: Linearity implies that the T|I](r,c) is a
linear combination of the pixels in U:

2.

(u,v)eu

Considering some weights {w;} /
//

b

We can consider weights as an P ;/’
image, or a filter h PPyl

. . . . r] é

The filter h entirely defines this //%//

operation :/

Giacomo Boracchi

Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix w

w
w(-1,-1) w(-1,0) | w(-1,1)
w(0,-1) | w(0,0) | w(0,1)
w(1,-11)| w(1,0) | w(1)

2.

(u,v)eU

This operation is

repeated for each

pixel in the input
image

-

N

A

/

Giacomo Boracchi

2D Correlation

Convolution is a linear transformation. Linearity implies that

(I Qw)(r,c) = 2 w(u,v) I(r + u,c + v)

(u,v)eu

w(—1,-1)| w(-1,0) [w(-1,1) |

| w(0,-1) w(0,0) w(0,1) |

' w(l,-1) w(1,0) w(1,1) |

C

We can consider weights as a filter h
The filter h entirely defines convolution
Convolution operates the same in each pixel

Giacomo Boracchi

2D Convolution

Convolution is a linear transformation. Linearity implies that

(@wWrd=)

J>

| w1y | w(1,0 |

w(l,-1)

| w(0,1) w(0,0)

w(0,-1) |

' w(=11) | w(-1,0) E|

w(—1,-1

w(u, v)

(u,v)eu

Rmk: indexes
have been shifted
in the filter w

c

We can consider weights as a filter h

The filter h entirely defines convolution

Convolution operates the same in each pixel

I(r—u,c—v)

Giacomo Boracchi

2D Convolution

Convolution is a linear transformation. Linearity implies that

(I ®w)(r,c) = 2 w(u,v) I(r —u,c — v)

(u,v)eu

Rmk: indexes

| w(0,1) w(0,0)

' w(=11) | w(—-1,0

We can con
The filter h e
Convolution op

— C
w w(1,1) w(1,0) w(l,-1) .
have been shifted | i

, in the filter w

w(0,-1)

The same operation is being performed in
each pixel of the input image

It is equivalent to 2D Correlation
up to a «flip» in the filter w

Giacomo Boracchi

2D Convolution

Convolution is a linear transformation. Linearity implies that

(I ®w)(r,c) = 2 w(u,v) *I(r —u,c — v)
(u,v)eu

Convolution is defined up to the “filter flip” for the Fourier Theorem to
apply. Filter flip must be considered when computing convolution in
Fourier domain and when designing filters.

However, in CNN, convolutional filters are being learned from data, thus
it is only important to use these in a consistent way.

In practice, in CNN arithmetic there is no flip!

Giacomo Boracchi

Convolution: Padding

How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change
the output size. However, no padding or symmetric padding are also
viable options

Input Volume (—pad 1) (7x7x3) Filter W0 (3x3x3)

X[e,2,0] wl[z,:,0]

o o o o oo “D 0 || 1 [[-1

o 1 0 2 [1t]o || 0 1 || 10

o 1 1 1 [o]nx IlD 1 ||-1 1

0 1 2 1 0 1 @

o1 2 0 2 2 0 Original image is in

0 1 0 1 0 O O violet, grey values are

padded to zero to

0 0 0 0 0 00 enable convolution

at image boundaries

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Convolution: Padding

How to define convolution output close to image boundaries?

Padding with zero is the most frequent option, as this does not change

the output size. However, no padding or symmetric padding are also

viable options (S,,,,)
wlume (+pad 1) (Tx7x3) Filter W0 (3x3x3) Qﬂdz' (I/ f/

X[, 4d0] wl[z,:,0]

< @ o o [oo o 0 || 1 1],
— "‘_|- _ e e
) o g0 2 [L]e JEE
: o1 1 1 [o]1\o 1 || 11
01 2 1 0 1710
i E R R Original image is in
- 0(1 0 1 0 010 violet, grey values are
e — padded to zero to B T
¢ 0 0 0 0 070 enable convolution
at image boundaries

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Padding Options in Convolution Animation

Rmk: Blue maps are inputs, and cyan maps the outputs.
Rmk: the filter here is 3 X 3

output

input

No padding
«valid»

Half padding T
«same» full padding

«full»

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Convolutional Neural Networks

Giacomo Boracchi

The typical architecture of a CNN

24@64x64

24@16x16

8@128x128

8@64x64

Max-Pool Convolution Max-Pool Dense

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN

iS an entire image 24@64x64

8@128x128 24@16x16

8@64x64

The image gets
convolved against
many filters

Max-Pool Convolution Max-Pool Dense

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN
IS an entire image

24@64x64

8@128x128

8@64x64

The image gets
convolved against
many filters

Max-Pool Convolution

When progressing along the network, the
«number of images» or the «number of
channels in the images» increases, while
the image size decreases

24@16x16

Max-Pool

Giacomo Boracchi

The typical architecture of a CNN

The input of a CNN
IS an entire image

8@128x128

24@64x64

L 8@64x64

The image gets
convolved against
many filters

Max-Pool Convolution

When progressing along the network, the
«number of images» or the «<number of
channels in the images» increases, while
the image size decreases

24@16x16

Max-Pool Dense

Once the image
gets to a vector,
this is fed to a
traditional
neural network

Giacomo Boracchi

The typical architecture of a CNN

—

A
‘-".""---.
L —

7

Convolutional Neural Networks (CNN)

CNN are typically made of blocks that include:
* Convolutional layers

* Nonlinearities (activation functions)

* Pooling Layers (Subsampling / maxpooling)

depth
= =000
OO i

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45661858

Convolutional Neural Networks (CNN)

An image passing through a CNN is transformed in a sequence of

volumes.

As the depth increases, the height and width of the volume
decreases

Each layer takes as input
and returns a volume

: /] depth

0000,
= (LX)

OOQOOO

_V

By Aphex34 - Own work, CC BY-SA 4.0,

% height

width

https://commons.wikimedia.org/w/index.php?curid=45661858

Convolutional Layers

Convolutional Layers

Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

a(r,c,1) = z wl(u,v,k) x(r +u,c + v, k) + bt
(u,v)eU,k X a

32
RN
I~ &
@7%530000

32

Filters need to have the same number of channels
as the input, to process all the values
from the input layer By Aphex34 - Own work, CC BY-SA 4.0, 3

' S . 21 . .
https://commons.wikimedia.org/w/index.php/curid=45659236 Ciacomo Boracchi

Convolutional Layers

Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

a(r,c,1) = z wl(u,v,k) x(r +u,c + v, k) + bt

(u,v)eU,k L A
(6 X \ b
¢ 32
Y /
B
< = OO0
[207

Filters need to have the same number of channels
as the input, to process all the values
from the input layer By Aphex34 - Own work, CC BY-SA 4.0, -E

' S . S . .
https://commons.wikimedia.org/w/index.php/curid=45659236 Ciacomo Boracchi

32

Convolutional Layers

Convolutional layers "mix" all the input components
The output is a linear combination of all the values in a region of the

input, considering all the channels

a(r,c,1) = z wl(u, v, k) x(r+u,c+v,k)Hbt

(u,v)eU,k
The parameters of this layer are called filters.

The same filter is used through the
whole spatial extent of the input

3

By Aphex34 - Own work, CC BY-SA 4.0,

https;//commons.wikimedia.org/w/index.php?curid=45659236

[

32

RN
P 28
.

32

=650000

Giacomo Boracchi

Convolutional Layers

Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

a(r,c,1) =

u, v, k) x(r +

3
(u,v)eUlk

The spatial dimension:

- spans a small neigborhood U (local
processing, it’s a convolution)

- U needs to be specified, it is a very important

attribute of the filter

U,

3

[

C+Elk)+b1

32

By Aphex34 - Own work, CC BY-SA 4.0,

https;//commons.wikimedia.org/w/index.php?curid=45659236

=650000

Giacomo Boracchi

Convolutional Layers

Convolutional layers "mix" all the input components

The output is a linear combination of all the values in a region of the
input, considering all the channels

a(r,c,1) = z wl(y, v, x(r+u,c+ v, + bl

(u,v)EU
The channel dimension:

32

- spans the entire input depth (no local

\
processing, like spatial dimension) e M
—~=60000

- there is no need to specify that in the
filter attributes

32

3

By Aphex34 - Own work, CC BY-SA 4.0,

_ Ve .) i
https;//commons.wikimedia.org/w/index.php?curid=45659236 Ciacomo Boracchi

Convolutional Layers

w? pl

¥\
\\-___ Q_

N

32

N

N

A

100«

By Aphex34 - Own work, CC BY-SA 4.0,
https.//commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers

Different filters yield different layers in the output

a(r,c,1) = z wl(u,v, k) x(r + u,c + v, k) + bl
(u,v)eu,k

a(r,c,2) = w?(u, v, k) x(r + u,c + v, k) + b?
(uv)eu,k

Different filters of the same layer have the
same spatial extent

By Aphex34 - Own work, CC BY-SA 4.0,

3

32

32

P 28
-
N

=

&

e

4

\‘/

4

https;//commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers aC,:, 1)

32

SP===
/>|pq©o<:;>

\
N\

32

S
A S

S
A

Al
\
\

3

By Aphex34 - Own work, CC BY-SA 4.0,
https;//commons.wikimedia.org/w/index.php?curid=45659236

Giacomo Boracchi

Convolutional Layers, remarks:

Given:
conv2 = tfkl.Conv2D (
filters = n £,
kernel size = (h x,h vy),
activation = 'relu’,
strides = (1,1),
padding = ‘same’,
name = 'conv2'
)
The parametres are the weights + one bias per filter
The overall number of parameters is
(hy-hy - d)-np +ng
Where d is the depth of the input activation

Layers with the same attribute can have different number of parameters
depending on where these are located By Aphex34 - Own work, CC BY-5A 4.0,

3

32

00000

https://commons.wikimedia.org/w/index.php/curid=45659236

Giacomo Boracchi

CNN Arithmetic

>.>

1 input map 1 filter 5x5

CNN Arithmetic

_>i o
1 input map 1 output map p‘)b&‘f
1 filters 5x5 h

Lot

CNN Arithmetic

o

1 input map 2 filters 5x5

CNN Arithmetic

.}

1 input map 2 filters 5x5 2 output maps

CNN Arithmetic

3 input maps 2 filters 5x5

CNN Arithmetic

3 input maps 2 filters 5x5

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps

Quiz: how many parameters
does this layer have?

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps
= 150 parameters in the filters

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps
=150 ... + 2 biases

CNN Arithmetic

3 input maps 2 filters 5x5 2 output maps

=150 ... + 2 biases
= 152 trainable parameters (weights)

+_
m
[Bll

r
R

| G
Tepd

Image credits Nicolo Ghielmetti

(OMASOL“@J
Tiltns

[CSL

\‘liw-‘m‘} Od' Pu“_

|

Ay
)

All +RUI+C31 +

L.
AlL +R224C32 4
by

O‘/\{’Po\'{»

SAnF s13F 4s A, B¢

Other Layers

Activation and Pooling

Activation Layers

Introduce nonlinearities in the network, otherwise the CNN might be equivalent to
a linear classifier...

Activation functions are scalar functions, namely they operate on each single value
of the volume. Activations don’t change volume size

RELU (Rectifier Linear Units): it’s a thresholding on the feature maps, i.e., a

max(0,-) operator. 1
« By far the most popular activation function in —_
deep NN (since when it has been used \:/
in AlexNet)

« Dying neuron problem: a few neurons
become insensitive to the input (vanishing

grandient problem)
X, if x>0
T(x)_{o, if x < 0 1 0« 1

Giacomo Boracchi

Activation Layers

Introduce nonlinearities in the network, otherwise the CNN might be
equivalent to a linear classifier...

LEAKY RELU: like the relu but include a small slope for negative values

|, if x>0 1
I'(x) = {0.0l*x if x <0

T(x)

B 1 O Giace¥o Bor:Jechi

RelLu

Acts separately on each layer

RelLU(al

Giacomo Boracchi

RelLu

Acts separately on each layer

RelLU (a?

Giacomo Boracchi

Activation Layers

Introduce nonlinearities in the network, otherwise the CNN might be
equivalent to a linear classifier...

TANH (hyperbolic Tangent): has a range (-1,1), continuous and
differentiable

2
T = — 1
(%) 1+ e %%

SIGMOID: has a range (0,1), continuous and differentiable
S(x) =

1+ e—2%
These activation functions are mostly popular in MLP architectures

Giacomo Boracchi

activation functions

3 | 1
—relu .
— sigmoid activation(x)
2.5 |—tanh n
—leaky relu
2 | |
1.9 T
1 |
0.5 / _|
0 —
-0.5]
— |
-3 -2 -1 0

3

Giacomo Boracchi

Pooling Layers

Pooling Layers reduce the spatial size of the volume.

The Pooling Layer operates independently on every depth slice
of the input and resizes it spatially, often using the MAX

I 224x224x64
operation.
p 112x112x64
Single depth slice pool
1112]| 4
max pool with 2x2 filters
oNmGNl 7 | 8 and stride 2 6 | 8
3(2[1]0] 3|4 | T
1 | 2 ESHE4 > o 112
224 downsampling
112

y] 224

In a 2x2 support it discards 75% of samples in a volume

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Max-Pooling (MP)

Acts separately on each layer

RelLU(al

MP(ReLU(al))

73

Giacomo Boracchi

Strides in Pooling Layers

Typically, the stride is assumed equal to the pooling size

 Where note specified, maxpooling has stride 2 X 2 and reduces
image size to 25%

It is also possible to use a different stride. In particular, it is possible to
adopt stride = 1, which does not reduce the spatial size, but just
perform pooling on each pixel

* this operation makes sense with nonlinear pooling (max-pooling)

Giacomo Boracchi

Dense Layers

As in feed-forward NN

The Dense Layers

32@16x16

(5]

24@32x32 24 @16x16
8@64x64 [EE%EEE:_
8@32x32
:

32@8x8

Max-Pool Convolution Pooling

Convolution

Here the spatial dimension is lost, the CNN
stacks hidden layers from a MLP NN.
It is called Dense as each output neuron is

connected to each input neuron

Pooling

p@ma |

1x512

..... 1 X1 0

Convolution

Pooling

Giacomo Boracchi

Convolutional Neural Networks (CNN)

The typical architecture of a convolutional neural network

24@64x64

24@16x16

8@128x128

1x256

L 8@64x64

! 1 ‘_ 'R

Assume zero Convolution: Max-pooling Convolution: Max-Pool Dense
padding There are 8 reduces There are 24
filters spatial filters
dimensions
by 2

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the
IEEE, 1998 86(11), 2278-2324.

Convolutional Neural Networks (CNN)

The typical architecture of a convolutional neural network

24@64x64
8@128x128 24@16x16

L 8@64x64

Max-Pool Convolution Max-Pool Dense

The output of the fully connected (FC) layer has the same size as the

number of classes, and provides a score for the input image to belong
to each class

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition” Proceedings of the
IEEE, 1998 86(11), 2278-2324.

Convolutional Neural Networks (CNN)

24@64x64

8@128x128

L 8@64x64

| conv | Subsampling | Conv. I Subsampling

Convolution filters are Fully Connected

learned for the Thresholdi Ne.ur.al Network
classification task at hand resholding + providing as output
Downsampling class probabilities

(ReLu + Maxpooling)

Giacomo Boracchi

The typical architecture of a CNN

(Learned) Features or
Latent Representation

—
3\

Jele
e

b bbbO

Data-Driven Feature Feature
extraction Classification

FEN: FEATURE EXTRACTION NETWORK, the convolutional block of CNN

Giacomo Boracchi

The typical architecture of a CNN

(Learned) Features or

@
Latent Representation g
i? a

Nele
O

[V

b bobS

Feature
Classification

Data-Driven Feature

extraction
Typically, to learn meaningful representations, many layers are required

The network becomes deep
Giacomo Boracchi

CNN «in action»

Giacomo Boracchi

Activations in a convolutional network

RELU RELU RELU RELU RELU RELU
CONVICONVl CONVlCONVl CONVlCONVl

b

— | I | -- JoN |
- -= — ?_-‘n
’ -"\ &%)
- | Lo a =" 1
J— e f— | —— i J— "‘““ Jo—
o s— P — . — pe— |ee—amsmer] | g Po—
= |I=] B |- . -
il ; ; —=] e I o ! % |
& = B = = -
P | e T —— | _—t e e T i | 1] > pemmm—)
:‘1‘ | o - -\
- - - n
P e = — — — —. — ‘_nr —
sl | |- !:‘
| ¥
P =2 ﬂ . m—————={ prsm—n({ _.‘ et .; P -
M= \ g - s == - i H
:§ Sl hl) ml
=

CS231n: Convolutional Neural Networks for Visual Reco http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Activations in a cQ

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV 1CONV1 FC

'Yy R 'Yy

i p— — -4 ?_--a
- fpr——{ o] jmm—{ o pm—] —1 e
- — - \ “ m = — 'J . !
W o peemmm—— P— e et _ ﬁ 2 :
ok N — b f— f— e— P] l —
- s .
L
2 ’ G [. [rm—{ [r— p— - — e e— _
L — 5 —| | = == = e
) | =] =] . =
— ————] | e I e | — = F——| P p— el
"N\ g s B = —| =
\ ,\“ \ rr,_,l =
)' - | — - i
P 1 — - . ? J
) Py | -
'P’ == — = = - — = = e—— e [p—

Each layer in the volume is represented as an image here

(using the same size but different resolution for visualization sake)
CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Activations in a convolutional network

ekl RELU
GCONV | CONV/ CONVl

I.I\

HITEEEE

L1 1 [Tl

|

"['S |

=

CS231n: Convolutional Neural Networks for VisuaPReco

http://cs231n.github.io/

) ';'VEME&H

AN

- : |
) ’ l‘ "
| | L

RELU RELU

.CONV‘CONV

http://cs231n.stanford.edu/
http://cs231n.github.io/

Activations in a convolutional network

RELU RELU RELU RELU

REILU RELU :ONVICONvl CO \lVlCONVj

‘V

|

CONV [CONV

Tk

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

AN

p | Iy |
|] ‘1 \ '
| f "-‘ |

| Y B —

. |

=
.

|

T
[TEISTRT T 17T

|) i

,"‘ ‘lt*l 4 | »'4 .
- .'.u..v..‘t; - | » 3 A o B
L2
| .
l..
J=i]

ATV

http://cs231n.stanford.edu/
http://cs231n.github.io/

Convolutional Neural Networks (CNN)

Btw, this figure contains an error.
If you are CNN-Pro, you should spot it!

Feature maps

]

Convolutions Subsampling Convolutions Subsampling Fully connected

By Aphex34 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=45679374 Giacomo Boracchi

The First CNN

Giacomo Boracchi

PROC. OF THE TEEE, NOVEMBER 1998

Gradient-Based Learning Applied to Document
Recognition

Yann LeCun,| Léon Bottou, Foshua Bengify, and Patrick Haflner

Abstract
Multilayer Neural Networks trained with the backpropa-

gation algorithm constitute the best example of a successful
Gradient-Based Learning technique. Given an appropriate
network architecture, Gradient-Based Learning algorithms
can be used to synthesize a complex decision surface that can
classify high-dimensional patterns such as handwritten char-
acters, with minimal preprocessing. This paper reviews var-
ious methods applied to handwritten character recognition
and compares them on a standard handwritten digit recog-
nition task. Convolutional Neural Networks, that are specif-
ically designed to deal with the variability of 2D shapes, are
shown to outperform all other techniques.

I. INTRODUCTION

Over the last several years, machine learning techniques,
particularly when applied to neural networks, have played
an increasingly important role in the design of pattern
recognition systems. In fact, it could be argued that the
availability of learning techniques has been a crucial fac-
tor in the recent success of pattern recognition applica-
tions such as continuous speech recognition and handwrit-
ing recognition.

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998)

Awards Home ACM A.M. Turing Award £ Spotlight on Turing Laureates ACM Prize in Computing

Home > Latest Awards News >

2018 Turing Award ‘

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing
Award

Bengio, Hinton and LeCun Ushered in Major Breakthroughs in Artificial
Intelligence

https://awards.acm.org/about/2018-turing

Giacomo Boracchi

https://awards.acm.org/about/2018-turing

LeNet-5 (1998)

Stack of Conv2D + RELU + AVG-POOLING A TRADITIONAL MLP

I—A—H_‘_\

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28
N

s

\

32x32 S2: f. maps

C5: layer :
6@14x14 Y F6: layer OUTPUT

120 ‘g4 10

I'r

‘ ——— .
| dense 1

conv2d 1 average conv2d 2 average
- pooling2d 1 B pooling2d 2
LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” Proceedings of the IEEE 86.11 (1998)

dense 3
dense 2

chi

The First CNN

Do not use each pixel as a separate input of a large MLP, because:
* images are highly spatially correlated,

« using individual pixel of the image as separate input features would
not take advantage of these correlations.

The first convolutional layer: 6 filters 5x5
The second convolutional layer: 16 filters 5x5

Giacomo Boracchi

LeNet-5 in Keras

from keras.models import Sequential

from keras.layers import Dense, Flatten, Conv2D, AveragePooling2D

num_classes = 10;

input shape=(32, 32, 1);

model

model

model

model

= Sequential ()

.add (Conv2D (filters = 6, kernel size = (5, 5), activation='tanh', input shape=inp
ut shape, padding = 'valid'))

.add (AveragePooling2D (pool size=(2, 2)))

.add (Conv2D (filters = 16, kernel size = (5, 5), activation='tanh',

padding = 'wvalid'))

model

model.
model.
model.

model.

.add (AveragePooling2D (pool size=(2, 2)))
add (Flatten())

add (Dense (120, activation='relu'))

add (Dense (84, activation='relu'))

add (Dense (num_classes, activation='softmax'))

Giacomo Boracchi

model.summary()

Layer (type) Output Shape Param #
conv2d 1 (Conv2D) (None, 28, 28, 6)

average pooling2d 1 (Average (None, 14, 14, 6)

conv2d 2 (Conv2D) (None, 10, 10, 16)

average pooling2d 2 (Average (None, 5, 5, 16)

flatten 1 (Flatten) (None, 400)

dense 1 (Dense) (None, 120)

dense 2 (Dense) (None, 84)

dense 3 (Dense) (None, 10)

Total params: 61,706

Trainable params: 61,706

Non-trainable params:

0

Giacomo Boracchi

J 3

model.summary() 1P

£ S
Layer (type) A Output Shape %i;%izx Param #
conv2d 1 (Conv2D) (None, 2,;3, 2‘|'8, 6) é’(S% 5 K’l)’ + & <6
average pooling2d 1 (Average (None, 14 , ‘ .C)
conv2d 2 (Conv2D) (None, 10, 10, @ 4é . .é: X SX 4) <+) &
average pooling2d 2 (Average (None, 2 , 5, 16 < x sxl o &
flatten 1 (Flatten) (None, 400) . D
dense 1 (Dense) (None, 120) 4?0 X 120+ 1.2 125
dense 2 (Dense) (None, 84) AX X 54 -t d4 40
dense 3 (Dense) (None, 10) J{ Xle 10

Total params: 61,706
Trainable params: 61,706
Non-trainable params: 0

Giacomo Boracchi

model.summary()

Layer (type) Output Shape Param #
y

conv2d 1 (Conv2D) (None, 28, 28, 6) 156 (6 x 5 x 5 + 6)
Input is a grayscale image

average pooling2d 1 (Average (None, 14, 14, 6)

conv2d 2 (Conv2D) (None, 10, 10, 16) 2416 (16 x 5 x 5 x 6 + 16)

The input is a volume
having depth = 6

average pooling2d 2 (Average (None, 5, 5, 16)

flatten 1 (Flatten) (None, 400) 0

dense 1 (Dense) (None, 120) 48120 ,
- Most parameters are still

dense 2 (Dense) (None, 84) 10164 in the MLP

dense 3 (Dense) (None, 10) 850

Total params: 61,706
Trainable params: 61,706
Non-trainable params: O

Giacomo Boracchi

model.summary()

Layer (type) Output Shape Param #
conv2d 1 (Conv2D) (None, 28, 28, 6) 156 (6 x 5 x 5 + 6)
Input is a grayscale image
average pooling2d 1 (Average (None, 14, 14, 6)
conv2d 2 (Conv2D) (None, 10, 10, 16) 2416 (16 x 5 x 5 x 6 + 16)
- The input is a volume
average pooling2d 2 (Average (None, 5, 5, 16) having depth = 6
flatten 1 (Flatten) (None, 400) 0
dense 1 (Dense) (None, 120) 48120 ,
- Most parameters are still
dense 2 (Dense) (None, 84) 10164 in the MLP
dense 3 (Dense) (None, 10) 850

Total params: 61,706
Trainable params: 61,706

Here, no-padding at the first layer is necessary to reduce the size of the latent
representation... and has no loss of information since images are black there!

Most of parameters are in MLP

What about a MLP taking as input the whole image?

Input 32 X 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of
the network) -> 86950 parameters: 1024 * 84 + 84 + 84 * 10 + 10

INPUT

32x32
F6: layer OUTPUT
84 10

F

Ay)b

Most of parameters are in MLP

What about a MLP taking as input the whole image?

Input 32 X 32 = 1024 pixels, fed to a 84 neurons (the last FC layers of
the network) -> 86950 parameters

But.. If you take an RGB input: 32 X 32 X 3,

CNN: only the nr. of parameters in the filters at the first layer increases
156 + 61550 - 456 + 61550
(6X5%X5)-> (6X5%x5X%X3)

MLP: only the first layer increases the # of parameters by a factor 3
1024 x84 — 1024 X 84 X 3

Giacomo Boracchi

Award Winning CNNSs

AlexNet

. — —

2012

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky [lya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilva@cs.utoronto.ca hintonf@cs.utoronto.ca

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilva Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilva@cs.utoronto.ca hintonf@cs.utoronto.ca

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

Awards Home ACM A.M. Turing Award £ Spotlight on Turing Laureates ACM Prize in Computing

Home > Latest Awards News > 2018 Turing Award

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing
Award

Bengio, Hinton and LeCun Ushered in Major Breakthroughs in Artificial
Intelligence

https://awards.acm.org/about/2018-turing

https://awards.acm.org/about/2018-turing

AlexNet (2012)

Developed by Alex Krizhevsky et al. in 2012 and won Imagenet competition

Architecture is quite similar to LeNet-5:
« 1 convolutional layers (rather large filters, 11x11, 5x5),

e 3 MLP

Input size 224 x 224 x 3 (the paper says 227 X 227 X 3)
Parameters: 60 million [Conv: 3.7million (6%), FC: 58.6 million (94%)]

-
L
_J.Iw h h
22N | C Y Max =
Uar 4 poaling
3 1B

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton.

\ i 2|
: Tk - 1
LS \ % = b F
;]] | LY .
iy 153 1%z 128 y S 2R N
rz N , . i
l'll".\ X -9 \ "\II f lIII. # 1
L} I_. LY : i-'hll |] ; .II- q .‘
ET I I '1-| - [
iy 1 5 128 | ! -
'ulll: 3 - I]ﬁ = \] GEnmSE ense
LY W |
k1 L1 L1
b _ 1 k'
la2 152 138 bax ||
Max pocling <% SEes
pooling

! SEam I'IlI'JI!!.'I'“.-I"

TaTiTs]

"Imagenet classification with deep convolutional neural networks.”" NIPS 2012.

AlexNet (2012) WAPEEMEIEEN |
To counteract overfitting, they introduce: | S N = ‘ il
« RELU (also faster than tanh) ‘

« Dropout (0.5), weight decay and norm layers (nbt used anymore)
* Maxpooling

The first conv layer has 96 11x 11 filters, stride 4.

The output are two volumes of 55 X 55 X 48 separated over two GTX 580 GPUs
(1.5GB each GPU, 90 epochs, 5/6 days to train).

Most connections are among feature maps of the same GPU, which will be mixed at
the last layer.

Won the ImageNet challenge in 2012
At the end they also trained an ensemble of 7 models to drop error: 18.2%->15.4%

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

-
[dense| |[dense

A Breaktrough in Image Classification

Giacomo Boracchi

IT1C 1TTMPaCl OF DECP LedlTliNg I VISUdal
Regognition

28% ~AlexNet, 8 layers

ZF, 8 layers
VGG, 19layers Many layers!

/" GoogLeNet, 22 layers

16%
ResNet, 152 layers

(Ensemble)
"~ SENet

B L N L L T T T T T T T

Classification accuracy on ILSVR

100% accuracy and reliability not realistic

[N Traditional computer vision
I Deep learning computer vision

2010 2011 2012 2013 2014 2015 2016 2017

ILSVRC: ImageNet Large Scale Visual Recognition Challenge

AlexNet / Imagenet Images

28% AlexNet, 8 layers

ZF, 8 layers ' motor scooter

mite container ship motor scooter leopard

VGG, 19 layers black widow lifeboat go-kart jaguar

/ cockroach amphibian moped cheetah

GooglLeNet, 22 layers tick fireboat bumper car F_' snow leopard

16% / starfish drilling platform golfcart Egyptian cat

ResNet, 152 layers

(Ensemble)

SENet

:)
shallow $ \]

100% accuracy and reliabilily not realistic

2010 2011 2012 2013 2014 2015 2016 2017 B Traditionsl computer vision griiie mushroom C erry_ a_ ascar cat
M Deep leaming computer vision nvertible agaric ”meh squirrel monkey

grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural 111
information processing systems 25 (2012).

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilyalcs.utoronto.ca hinton@cs.utoronto.ca

- / Tg dl:"l'“.l"
| EWhy d|d it took almost 15 years to bloom? -._{
% | 3 1 . ik ”|'. i 4/ ¥ -'i
| R . |, 31 ‘n_-_l'i 3 i \ 2 dense | dense
B .."-. 5 -\. 5.. .'f i N 1500
'.'-__]l. -._l.. ' i 183 TE 178 Max . |]
?'?-1'"-:‘ Stride, Max T3 Max pooling 4048 2048
k| af 4 pling pooling

+8

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

How was this possible?

Giacomo Boracchi

The ImageNet project is a large

visual database designed for use in visual
object recognition software research. More
than 14 million images have been hand-
annotated by the project to indicate what
objects are pictured and in at least one
million of the images, bounding boxes are
also provided.[3] ImageNet contains more
than 20,000 categories

From Wikipedia October 2021

Deng, W. Dong, R. Socher, L.-). Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image
Database. CVPR, 2009.

Giacomo Boracchi

Parallel Computing Architectures

https://www.flickr.com/photos/nvidia/34686550412

Giacomo Boracchi

And more recently.... Software libraries

O PyTorch

TensorFlow

Google LLC, Public domain, via Wikimedia Commons

VGG: going deeper!

VGG

2013

Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman®
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR (2015)

VGG16 (2014)

The VGG16, introduced in 2014 is a deeper variant of the AlexNet convolutional
structure. Smaller filters are used and the network is deeper

Parameters: 138 million [Conv: 11%, FC: 89%]

224 x224x3 224 x224x64

112x 128

28 X 28 x 512 TxT7Tx512
14 x14x 512

y]5 _1x1x4096 1x1x1000

@ convolution+RelLU

@ max pooling
| fully connected+ReLLU

- 1‘ softmax

L

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition.” ICLR (2015)

VGG16 (2014)

The VGG16, introduced in 2014 is a deeper variant of the AlexNet convolutional
structure. Smaller filters are used and the network is deeper

Parameters: 138 million [Conv: 11%, FC: 89%]

224)(22:1)‘(3 224 x 224 x 64
These architecture won the
first place places
(localization) and the
second place (classification)
tracks in ImageNet
Challenge 2014

112 x 128

H56|x 56 x 256

28 X 28 x 512 TXTx512
14 x14x 512

= _ 1x1x4096 1x1x1000

@ convolution+ReLU

tﬂ max pooling
| fully connected+ReLLU

Input size 224 x 224 X 3

~] softmax

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition.” ICLR (2015)

VGG16 (2014): Smaller Filter, Deeper Network

The paper actually present a thorough study on the role of network depth.

[...[Fix other parameters of the architecture, and steadily increase the depth of the
network by adding more convolutional layers, which is feasible due to the use of
very small (3. x 3) convolution filters in all layers.

Idea: Multiple 3x3 convolution in a sequence achieve large receptive fields with:
e |ess parameters
 more nonlinearities

224x224x3 224x224x64

than larger filters in a single layer

112 x]112x 128
7

3 layers 3x3 1 layer 7x7

II ' 14ﬂ><14ﬁx‘r’%xixallgx1x-1(mﬁ 1%1 %1000
Receptive field 7X7 7X7
Nr of parameters 3 X 3 X 3 = 27 49 T i
Nr of nonlinearities 3 1 |

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR (2015)

VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 224, 224, 3) 0 [..]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808

blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808

block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0

block3 convl (Conv2D) (None, 56, 56, 256) 295168 fcl (Dense) (None, 4096) 102764544

block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) 16781312

block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) 4097000

Blocks_pool (MaxPooling2) (Nons, 28, 28, 256) 5 Total params: 138,357,544
Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0

block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808

[..]

Giacomo Boracchi

VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 224, 224, 3) A [..]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808

blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808

block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0

block3 convl (Conv2D) (Nome, 56, 56, 256) 295168 | fcl (Dense) (None, 4096) 102764544

block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) 16781312

block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) 4097000

BTocks_pool (WaxPoolingZ) (Noms, 25, 28, 256) 5 Total params: 138,357,544
Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0

block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808

blockd_conv3 (ConvaD) Wone, 28,28, 512) 2359808 Many convolutional blocks without maxpooling

Giacomo Boracchi

VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 224, 224, 3) 0 [..]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0

blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808

blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 convl (Conv2D) (None, 112, 112, 128) 73856 block5 conv3 (Conv2D) (None, 14, 14, 512) 2359808

block2 conv2 (Conv2D) (None, 112, 112, 128) 147584 block5 pool (MaxPooling2D) (None, 7, 7, 512) 0

block2 pool (MaxPooling2D) (None, 56, 56, 128) 0 flatten (Flatten) (None, 25088) 0
N\

block3 convl (Conv2D) (None, 56, 56, 256) 295168 fcl (Dense) (None, 4096) //'10276454

block3 conv2 (Conv2D) (None, 56, 56, 256) 590080 fc2 (Dense) (None, 4096) \ 16781312

block3 conv3 (Conv2D) (None, 56, 56, 256) 590080 predictions (Dense) (None, 1000) 4097000

block3 pool (MaxPooling2D) (None, 28, 28, 256) 0 ;;;;I-;;;;;;T-Iggjgg;jgzZ------—---———------========-- —

Trainable params: 138,357,544

block4 convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0

block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808

block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808 Most parameters in FC layers - 123 , 642 , 856

[...]

Giacomo Boracchi

VGG16

Layer (type) Output Shape Param # Layer (type) Output Shape Param #
input 1 (InputLayer) (None, 224, 224, 3) 0 [..]

blockl convl (Conv2D) (None, 224, 224, 64) 1792 block4 pool (MaxPooling2D) (None, 14, 14, 512) 0
blockl conv2 (Conv2D) (None, 224, 224, 64) 36928 block5 convl (Conv2D) (None, 14, 14, 512) 2359808
blockl pool (MaxPooling2D) (None, 112, 112, 64) 0 block5 conv2 (Conv2D) (None, 14, 14, 512) 2359808

block2 convl (Conv2D) ngh memory requeSt, abOUt -IOOMB per , 14, 512) 2359808
- image (224 X 224 x 3) to be stored inall .
block3_convl (Conv2D) the activation maps, Only for the forward = 102764544
procks_conva (Convab) Pass. During training, with the backward *° rerene

block3 conv3 (Conv2D) ., . 00) 21657550
pass it’s about twice

Trainable params: 138,357,544

088) 0

block3 pool (MaxPooling2D)

block4 _convl (Conv2D) (None, 28, 28, 512) 1180160 Non-trainable params: 0
block4 conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4 conv3 (Conv2D) (None, 28, 28, 512) 2359808

[...]
Giacomo Boracchi

MobileNet: Reducing
Computational Costs

MobileNet

2017

Giacomo Boracchi

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications
Andrew G. Howard Menglong Zhu Bo Chen Dmitry Kalenichenko
Weijun Wang Tobias Weyand Marco Andreetto Hartwig Adam

Google Inc.

{hmwarda,menglﬁﬂg,bcchen,dka;eni:henkc,weijunw,weyand,anm,hadam}@gﬁﬁg;e.cmm

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Depth-wise Separable Convolutic ="

Goal: reduce the number of parameters and of D - / s —/
operations, to embed networks in mobile application Di —N —
- conv2D layers have quite a few parameters (®) Standard Convolution Filter
- conv2D layers mixes all the channels 1
Dy

Dk — M —
In contrast, separable convolutoins

- Perform first a depth-wise convolution: a spatial

only operation, without mixing the components
- Point-wise convolution that mixes the resulting
channes without considering the spatial e N —

d | m e n S | O n . ic) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

(b) Depthwise Convolutional Filters

Figure 2. The standard convolutional filters in (a) are replaced by
two layers: depthwise convolution in (b) and pointwise convolu-
tion in (c) to build a depthwise separable filter.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Latent representation iIn
CNNS

Repeat the «t-SNE experiment» on the CIFAR dataset,
using the last layer of the CNN as vectors

Giacomo Boracchi

The typical architecture of a CNN

Convolutional Layers

Extract high-level features from pixels Classify
A A
| [\

8@

éégg

L7

1/

ﬂ‘@O

Latent Representation: MLP for feature
Data-Driven Feature Vector classification

Giacomo Boracchi

the classifier (CIFAR 100 images)

— » A N 5 A

representation of a CNN are

Distances in the latent o
- -
| much more meaningful than

> 'i?) :
data itself =) L

r _—— — - ——

t-SNE representation using €, distance

l

d(11;12) — ||I1 - 12”2

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

http://cs231n.stanford.edu/
http://cs231n.github.io/

Limited Amount of Data:
Data Augmentation

Training a CNN with Limited Aumont of Data

The need of data

Deep learning models are very data hungry.
.. watch out: each image in the training set have to be annotated!

How to train a deep learning model with a few training images’
* Data augmentation

* Transfer Learning

Giacomo Boracchi

Steller sea lions in the western Aleutian
Islands have declined 94% in the last 30
years.

e R e

{

3D

)

https://github.com/marioZYN/FC-CNN-Demo

The Challenge

In very large aerial images (= 5K x 4K) shot by drones, automatically
count the number of sealions per each category

juveniles subadult_males
_ =

Giacomo Boracchi

pups

The Challenge

This problem can be naively casted in a patch-by-patch 6-class
classification problem, where we include also background

juveniles subadult_males

Giacomo Boracchi

An Example of CNN predictions

adult_males

subadult_males
pups

juveniles
backgrounds
adult_males

adult_females

T T T T
00 01 0z 03 04 05 06
predicticn probabliity

subadult_males

pups

juveniles
backgrounds

adult_males

adult_females

T T T T
00 01 02 03 04 05 06
prediction probabliity

subadult_males

pups

juveniles
backgrounds
adult_males

Credits Yinan Zhou

adult_females

T T T
0.00 005 010 015 0.20 025 030 035
prediction probabliity

https://github.com/marioZYN/FC-CNN-Demo

https://github.com/marioZYN/FC-CNN-Demo

Data Augmentation

Often, each annotated image represents a class of images that are all
likely to belong to the same class

In aereal photograps, for instance, it is normal to have rotated, shifted
or scaled images without changing the label

subadult_males

20
40

Giacomo Boracchi

Data Augmentation

Original image

subadult_males

20
20
X %0
60
60 e
20
80

subadult_males

subadult_males

40 60

subadult_males

Augmented Images

subadult_males

60 80

subadult_males

subadult_males

20

subadult_males

40 60

subadult_males

subadult_males

Data Augmentation

Data augmentation is typically performed by means of

Geometric Transformations:
 Shifts /Rotation/Affine/perspective distortions
e Shear
e Scaling
* Flip

Photometric Transformations:
« Adding noise
* Modifying average intensity
e Superimposing other images
* Modifying image contrast

Giacomo Boracchi

Data Augmentation: Criteria

Augmented versions should preserve the input label

« e.g. if size/orientation is a key information to determine the output
target (either the class or the value in case of regression), wisely
consider scaling/rotation as transformation

Augmentation is meant to promote network invariance w.r.t.
transformation used for augmentation

Giacomo Boracchi

Data Augmentation

16:00

(l,y)

(R(D),y)

16:00

You don’t want to introduce
transformations that ruin
distinctive information of a given
class

A networR predicting the time
from an image of a clock without
numbers is not invariant w.r.t
rotations

Giacomo Boracchi

Image Augmentation and CNN invariance

Given an annotated image (I,y) and a set of augmentation
transformations {A4,;};, we train the network using these pairs

1A, (D, y)ih

Through data augmentation we train the network to «become
invariant» to selected transformations. Since the same label is
associated to I and A;(1) VI

Unfortunately, invariance might not be always achieved in practice

Giacomo Boracchi

However...

This sort of data augmentation might not be enough to capture the
inter-class variability of images...

Superimposition of targets

juveniles adult_males

Giacomo Boracchi

However...

Background variations

backgrounds backgrounds

backgrounds

20 20

Giacomo Boracchi

However...

Background variations

pups

adult_males

Giacomo Boracchi

However...

Out of focus, bad exposure

adult_males juveniles

v A

adult_males

Giacomo Boracchi

Test Time Augmentation

Giacomo Boracchi

Test Time Augmentation (TTA) or Self-ensembling

Even if the CNN is trained using augmentation, it won’t achieve perfect
invariance w.r.t. considered transformations

Test time augmentation (TTA): augmentation can be also performed at
test time to improve prediction accuracy.

* Perform a few random augmentation of each test image I
{4 (D}
* (lassify all the augmented images and save the posterior vectors
p1 = CNN(4;(D)
* Define the CNN prediction by aggregating the posterior vectors {p;}
=Y e N e.g.p = Avg({pi}1)

I |:> [AUG] |:> {A.(D)} |:> [CNN] |:> e } |:> [aggregation]|:> y

Giacomo Boracchi

Test Time Augmentation (TTA) or Self-ensembling

TTA:

particularly useful for test images where the model is quite unsure.
extremely computationally demanding

Need to wisely configure the number and type of transformations to be
performed at test time

Giacomo Boracchi

Test Time Augmentation

0 A e
original predictions
wnll Bu.ulls
d .) augmented
input f)
I | - aggregated
+ prediction
--II.--.-- ..l..-.--.
\ Y,
l-lllll.l- *
slalalasnn class
.lllllll-l BIRD
I-I-l..l-l

Figure source: https://stepup.ai/test_time_data_augmentation/

https://stepup.ai/test_time_data_augmentation/

Benefits of Data Augmentation

Image Augmentation and Overfitting

Given an annotated image (I,y) and a set of augmentation
transformations {A4,;};, we train the network using these pairs

1A, (D, y)ih

Training including augmentation reduces the risk of overfitting, as it
significantly increase the training set size

Giacomo Boracchi

Image Augmentation and Overfitting

Moreover, data augmentation can be used to compensate for class
imbalance in the training set, by creating more realistic examples from

the minority class

In general, transformations used in data-augmentation {4;} can be also
class-specific, in order to preserve the image label

Giacomo Boracchi

Mixup Augmentation

Augmented copies {4;(1)}; of an image I live in a vicinity of I, and
have the same label of [

Transformations (photometric or geometric) are expert-driven

Mixup is a domain-agnostic data augmentation technique
- No need to know which (label-preserving) transformations to use

- mixup trains a neural network on virtual samples that are convex
combinations of pairs of examples and their labels

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018

Mixup Augmentation

Given a pair of training samples (I;, ;) and (I;,y;) of drawn at random
possibly belonging to different classes, we define

Virtual samples (and their label)

y=2Ay; + (1 — Ay,

Where A € [0,1] and y;, and y; are one-hot encoded labels

-
L

Image

[0.0, 1.0] [0.7, 0.3]

Label [1.0, 0.0]
cat dog

cat dog
https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup

cat dog

https://www.kaggle.com/code/kaushal2896/data-augmentation-tutorial-basic-cutout-mixup

Mixup Augmentation, Intuition

mixup extends the training distribution by incorporating the prior
kRnowledge that linear interpolations of feature vectors should lead to
linear interpolations of the associated targets.

mixup can be implemented in a few lines of code, and introduces
minimal computation overhead.

Mixup in keras:
https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimization. ICLR 2018

https://keras.io/guides/keras_cv/cut_mix_mix_up_and_rand_augment/

Augmentation In Keras

Giacomo Boracchi

Augmentation in Keras

There are multiple preprocessing layers to be introduced after the input
layer to perform:

photometric transformations
geometric transformations
to the image

https://keras.io/api/layers/preprocessing layers/image augmentation/

Giacomo Boracchi

https://keras.io/api/layers/preprocessing_layers/image_augmentation/

Augmentation Layers

These layers apply random augmentation transforms to a batch of
images. They are only active during training.

tf.

KEras.

ayers.Rand

omCrop

tf.

KEras.

ayers.Rand

omFlip

tf.

KEras.

ayers.Rand

omTranslation

tf.

KEras.

ayers.Rana

omRotation

tf.

KEras.

ayers.Randg

omZoom

tf.

KEras.

ayers.Rang

omHeight

tf.

KEras.

ayers.Rand

omWidth

tf.

KEras.

ayers.Rang

omcContrast

Giacomo Boracchi

https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_crop#randomcrop-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_flip#randomflip-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_translation#randomtranslation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_rotation#randomrotation-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_zoom#randomzoom-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_height#randomheight-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_width#randomwidth-class
https://keras.io/api/layers/preprocessing_layers/image_augmentation/random_contrast#randomcontrast-class

Preprocessing Layers

Image preprocessing layers, these are active at inference
- Resizing layer

- Rescaling layer

- CenterCrop layer

Giacomo Boracchi

https://keras.io/api/layers/preprocessing_layers/image_preprocessing/resizing
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling
https://keras.io/api/layers/preprocessing_layers/image_preprocessing/center_crop

Augmenting Images

Define a simple network that performs a random flip of the input
flip = tf.keras.Sequential (]

tfkl.RandomFlip ("horizontal and vertical"),
1)

Invoke this network to apply augmentation to images
flipped X train = flip(X train)

Giacomo Boracchi

Augmenting Images

You can stuck multiple layers

pack a few augmentation layers in a sequence

augmentationNet = tf.keras.Sequential ([
tfkl.RandomFlip ("horizontal and vertical"),
tfkl.RandomTranslation(0.1,0.1),
tfkl.RandomRotation(0.1),

], name='augmentationNet’)

Invoke this network to apply augmentation to images

augmentated X train = augmentationNet (X train)

Giacomo Boracchi

Training with data augmentation

You can include augmentation / preprocessing layers directly in the network architecture
Note:

- Augmentation layers will be active only during training
- Preprocessing layers will be active also during inference

def build model with augmentation (input shape, output shape):
tf.random.set seed(seed)

Build the neural network laver by layer
input layer = tfkl.Input (shape=input shape, name='Input')

include augmentation layers

= tfkl.RandomFlip ("horizontal and vertical") (input layer)
= tfkl.RandomTranslation(0.1,0.1) (a)

= tfkl.RandomRotation (0.1) (b)

Q O O =

convl = tfkl.Conv2D(..) (c)

Giacomo Boracchi

Augmentation in Keras (other option)

from keras.preprocessing.image import
ImageDataGenerator

ImageDataGenerator (

rotation range=0,

width shift range=0.0, height shift range=0.0,
brightness range=None, shear range=0.0,

zoom range=0.0, channel shift range=0.0,

fill mode='nearest',

horizontal flip=False, vertical flip=False,

rescale=None,
preprocessing function=None)

Giacomo Boracchi

Augmentation in Keras: flow from images

The Image generator has a method £flow from directory that

allows to load images in folder where different classes are arranged in
subfolders.

ImageDataGenerator.flow from directory(
directory=PATCH PATH + 'train/',
target size=(img width, img width),
batch size=batch size,
shuffle=True)

Giacomo Boracchi

Augmentation in Keras (other option)

from keras.preprocessing.image import
ImageDataGenerator

ImageDataGenerator (

rotation range=0,

width shift range=0.0, height shift range=0.0,
brightness range=None, shear range=0.0,

zoom range=0.0, channel shift range=0.0,

fill mode='nearest',

horizontal flip=False, vertical flip=False,

preprocessing function=None

/ .. in case you need some extra flexibility

Giacomo Boracchi

Data Driven Features

Giacomo Boracchi

Latent representation iIn
CNNS

Repeat the «t-SNE experiment» on the CIFAR dataset,
using the last layer of the CNN as vectors

Giacomo Boracchi

The typical architecture of a CNN

Convolutional Layers

Extract high-level features from pixels Classify
A A
| [\

8@

éégg

L7

1/

ﬂ‘@O

Latent Representation: MLP for feature
Data-Driven Feature Vector classification

Giacomo Boracchi

The typical architecture of a CNN

Convolutional Layers .
Extract high-level features from pixels Classify
A A
| [\

) TP

ole

L7

y, to learn meaningful representations, many layers are required
The network becomes deep

Giacomo Boracchi

Feature Extraction Networks

(Learned) Features or
Latent Representation

) A A m

[V

ETA

Feature

Data-Driven Feature
Classification

extraction

FEN: FEATURE EXTRACTION NETWORK, the convolutional block of CNN

Giacomo Boracchi

Feature Extraction Networks

The new paradigm to solve visual recognition problems

* Train a CNN in an end-to-end manner and you get better
features that optimized for solving the problem at-hand

Instead of engineering features

Key advantages:

Everything (feature extraction and classification) is
optimized for improving the task at hand.

End-to-end trainable solutions require no experts, just
annotated data.

Plenty of high-level frameworks (Keras, Tensorflow,
PyTorch, TensorFlow Lite) that allows solving complex
visual recognition by simply programming black-boxes.

Democratisation of Computer Vision!
Very effective...

Giacomo Boracchi

Limited Amount of Data:
Transfer Learning

Training a CNN with Limited Aumont of Data

The Rationale Behind Transfer Learning

The typical architecture of a CNN

Convolutional and Pooling Layers Classify

Extract high-level features from pixels (general) (task-specific)
A
[

| |

)€

O

5. Qo¢
S
O

L7

Latent Representation:

MLP for feature
Data-Driven Feature Vector

classification

Giacomo Boracchi

Very Good Features!

FEN is trained on large training sets (e.g. ImageNet) typically including

hundres of classes.
IMAGENET

L = 999 output neurons

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, man-eating shark, Carcharodon caharias’,

999 toilet tissue, toilet paper, bathroom tissue

00

Q 998 ear, spike, capitulum

Giacomo Boracchi

Very Good Features!

O O L = 999 output neurons
— Q 0 tench, Tinca tinca
- O 1 goldfish, Carassius auratus
— O 2 great white shark, man-eating shark, Carcharodon caharias’,

998 ear, spike, capitulum

: O O 999 toilet tissue, toilet paper, bathroom tissue

The output of the fully connected layer has the same size as the
number of classes L, and each component provide a score for the input
image to belong to a specific class.

This is very task-specific:

 What if | have a small TR of images of cats and dogs for training?
 What if | want to train a classifier for the six types of sealions?

* (Can we use these feature for solving other classification problems?

Giacomo Boracchi

Transfer Learning
O

e

i

o

L = 999 output neurons

0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, man-eating shark, Carcharodon caharias’,

998 ear, spike, capitulum
O Q 999 toilet tissue, toilet paper, bathroom tissue

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

Giacomo Boracchi

Transfer Learning

|

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

Giacomo Boracchi

Transfer Learning

O O L = 2 output neurons

QP
Q-

i

o

0 dog
1 «cat

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)
2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

Giacomo Boracchi

Transfer Learning

8 O L = 2 output neurons
E Q O 0 dog

Q 1 cat

QO O

IMAGE
1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)

2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

4. «Freeze» the weights of the FEN.

Giacomo Boracchi

Transfer Learning

O L = 2 output neurons
O outp
- O O
i 8 O 0 dog
50 o

1. Take a powerful pre-trained NN (e.g., ResNet, EfficientNet, MobileNet)
2. Remove the FC layers.

3. Design new FC layers to match the new problem, plug after the FEN
(initialized at random)

4. «Freeze» the weights of the FEN.
5. Train the whole network on the new training data TR

Giacomo Boracchi

Transfer Learnmg in the Seallon Case

adult_females

subadul ltmal -

backgrounds
—

60 80

FC Layers having

VGG16 6 output neurons

IMAGENET

«Froozen»

6 X1
1024x1

| DN R g Train the whole architecture on the training set
‘ ‘ S of augmented patches from sealions

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/ Giacomo Boracchi

https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network/

Transfer Learning vs Fine Tuning

Different Options:

* Transfer Learning: only the FC layers are being trained. A good option
when little training data are provided and the pre-trained model is
expected to match the problem at hand

* Fine tuning: the whole CNN is retrained, but the convolutional layers
are initialized to the pre-trained model. A good option when enough
training data are provided or when the pre-trained model is not
expected to match the problem at hand.

Typically, for the same optimizer, lower learning rates are used when
performing fine tuning than when training from scratches

Giacomo Boracchi

Best Practice

Typically, to take the most out of a pretrained model:

« Connect a new output layer (having few parameters)

* Transfer Learning: train the output layer only

 Make all the “last layers” trainable

* Fine tuning: train the entire network with a low learning rate
Compile the model

ft model.compile (loss=tfk.losses.BinaryCrossentr
opy (), optimizer=tfk.optimizers.Adam(le-
5), metrics='accuracy’)

This strategy allows defining good predictions once the output layer
has been trained

Giacomo Boracchi

Pretrained network

Input

Pretrained
Convolutional
Base

!

Pretrained
Classifier

!

Prediction

L

Feature Extraction

Convolutional

New Classifier

Input

Pretrained

Base

|

Freeze

|
I
L

!

Prediction

!

Input

r--l--1

Pretrained

e | Convolutional
o

New Classifier

I
|
<1 Base |
E Freeze
S| '
&0]]
E Fine Tune
21 Convolutional !
_E Base i
- |
|
I

I
I
.

|

Prediction

Giacomo Boracchi

Transfer Learning In Keras

Giacomo Boracchi

Where to find pretrained models?

Available models

https://keras.io/api/applications/

. Time (ms) per Time (ms) per

Model size Top-1 Top-5 Parameters | Depth | inference step | inference step
(MB) | Accuracy| Accuracy (CPU) (GPU)

Xception 38 79.0% 54.5% 22.9M 31 109.4 8.1
VGG16 528 71.3% 90.1% 138.4M 16 69.5 4.2
VGG19 549 71.3% 90.0% 143.7M 19 84.8 4.4
ResNet50 98 74.9% 92.1% 25.6M 107 58.2 4.6
ResNet30V2 98 76.0% 53.0% 25.6M 103 45.6 4.4
ResNet101 171 76.4% 52.8% 44.7M 209 89.6 5.2
ResNet101V2 171 771.2% 93.8% 44.7M 205 727 5.4
ResMet152 232 76.6% 93.1% B60.4M 311 127.4 6.5
ResMNet152V2 232 78.0% 94.2% 60.4M 307 107.5 6.6
InceptionV3 92 77.9% 93.7% 23.9M 189 42.2 6.9
InceptionResNetV2 215 80.3% 95.3% 55.9M 449 130.2 10.0
MobileMet 16 70.4% 89.5% 4.3M 55 226 34
MobileNetV2 14 71.3% 90.1% 3.5M 105 25.9 3.8
DenseNet121 33 75.0% 92.3% 8.1M 242 771 5.4
DenseNet169 57 76.2% 93.2% 14.3M 338 96.4 6.3
DenseNet201 80 77.3% 93.6% 20.2M 402 127.2 6.7
NASMNetMohbile 23 74.4% 51.9% 5.3M 389 27.0 6.7
MASNetLarge 343 82.5% 96.0% 88.9M 533 344.5 20.0
EfficientNetB0 29 77.1% 93.3% 5.3M 132 46.0 49

https://keras.io/api/applications/

Importing Pretrained Models in keras...

Pre-trained models are available, typically in two ways:

* include top = True: provides the entire network, including
the fully convolutional layers. This network can be used to solve the
classification problem it was trained for

* include top = False: contains only the convolutional layers
of the network, and it is specifically meant for transfer learning.

Have a look at the size of these models in the two options!

Giacomo Boracchi

Importing Pretrained Models in keras...

from keras import applications

base model = applications.VGGlé6 (weights =
"imagenet'", include top=False, input shape =
(img width, img width, 3), pooling = “avg")

Giacomo Boracchi

Importing Pretrained Models in keras...

from keras import applications

base model = applications.VGGlé6 (weights =
"imagenet'", include top=False, input shape =
(img width, img width, 3), pooling = “avg")

When include top=False, the network returns the output of a
global pooling layer, which can be:

« pooling = “avg"“ Global Averaging Pooling (GAP)
« pooling = “max"“ Global Max Pooling (GMP)

* pooling = “none“ There is no pooling, it returns the
activations

Giacomo Boracchi

How to extract the feature extraction network?

Actually, for sequential models, you create feature extraction network
fen = tfk.Sequential (model.layers[:-2])
fen.output_ shape

>> 128

Convolution layers Fully connected layers

A
=l —_y 256x1
e 1024x1
1024 4096x1

Giacomo Boracchi

How to extract the feature extraction network?

Actually, for sequential models, you create feature extraction network
fen = tfk.Sequential (model.layers[:-2])

Note: each Keras Application expects a specific kind of input preprocessing.

For MobileNetV2, call
tf.keras.applications.mobilenet v2.preprocess input

on your inputs before passing them to the model. mobilenet_v2.preprocess_input
will scale input pixels between -1 and 1.

Giacomo Boracchi

Transfer Learning in Keras...

Requires a bit of TensorFlow Backend to add the modified Fully
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers
(they are in model . layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False

Giacomo Boracchi

An example of model loading

load a pre-
trained MobileNetVZ2 model without weights

mobile = tfk.applications.MobileNetV2 (
input shape= (224, 224, 3),
include top=False,

pooling='avg',

Giacomo Boracchi

Transfer Learning: adding the new Network Top

Requires a bit of TensorFlow Backend to add the modified Fully connected
layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers (they
are in model . layers) and then modify the trainable property

Add the classifier layer to the MobileNet
inputs = tfk.Input (shape=(224,224,3))

x = mobile(inputs) # concatenates inputs and the output
of the pretrined network... the entire mobileNet is hand
led as a layer

x = tfkl.Dropout (0.5) (x) # good to prevent overfitting

outputs = tfkl.Dense(l, activation='sigmoid') (x) # conne
ct a new output layer

Giacomo Boracchi

Transfer Learning: setting layers trainable property

Requires a bit of TensorFlow Backend to add the modified Fully
connected layer at the top of a pretrained model

Then, before training it is necessary to loop through the network layers
(they are in model . layers) and then modify the trainable property

for layer in model.layers[: lastFrozen]:
layer.trainable=False

Giacomo Boracchi

Image Retrieval From The
Latent Space

Giacomo Boracchi

Features are Good For Image Retrieval

Feed a test image and compute its latent
representation

Test image

:

X

Latent Representation:
Data-Driven Feature Vector

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

Features are Good For Image Retrieval

Retrieve the training images
having the closest latent
representations

Feed a test image and compute its latent
representation

Test image

The 3- nearest neighborhood of x

X X1 X2 X3

Latent Representation:
Data-Driven Feature Vector

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

Features are Good For Image Retrieval

Retrieve the training images
having the closest latent
representations

Feed a test image and compute its latent
representation

Test image

The 3- nearest neighborhood of x

X X1 X2 X3

Latent Representation:
Data-Driven Feature Vector

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012

Features are Good For Image Retrieval

Feed a test image and compute its latent Training Images corresponding to the
representation closest latent representations!
Test image

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25 (2012).

1-NN classification in the latent space

feed the test imate to the fen

image features = fen.predict(test image)

feed fen with the entire training set (use batches of 512)

features = fen.predict (X train val,batch size=512,verbose=0)

compute distances (e.g. elll) between image featres and features,

distances = np.mean(np.abs (features - image features) axis=-1)
sortedDistances = distances.argsort()

sort images (and labels) according to the distance computed above
ordered images = X train val[sortedDistances]
ordered labels = y train val[sortedDistances]

associate to image features the closest image ordered images[0]

Giacomo Boracchi

CNNs In Keras

What is Keras’

An open-source library providing high-level building blocks for
developing deep-learning models in Python

Designed to enable fast experimentation with deep neural networks, it
focuses on being user-friendly, modular, and extensible

Doesn’t handle low-level operations such as tensor manipulation and
differentiation.

Relies on backends (TensorFlow, Microsoft Cognitive Toolkit, Theano, or
PlaidML)

Enables full access to the backend

Giacomo Boracchi

The software stack

Keras

~

CUDA/cuDNN | | BLAS,Eigen |

] .

[\ GPU | | CPU :l

Giacomo Boracchi

Why Keras?

Pros:

Higher level = fewer lines of code
Modular backend = not tied to tensorflow
Way to go if you focus on applications

cons:
Not as flexible
Need more flexibility? Access the backend directly!

Giacomo Boracchi

We will manipulate 4D tensors

Images are represented in 4D tensors:
Tensorflow convention: (samples, height, width, channels)

Color channels |

2_/‘

-

Height < Y

Samples

Width

Giacomo Boracchi

Building the Network

Giacomo Boracchi

Convolutional Networks in Keras

it is necessary
from keras.models
from keras.layers
from keras.layers

to import some package
import Sequential

import Dense, Flatten
import Conv2D, MaxPooling2D

and initialize an object from Sequential ()

model = Sequential ()

Giacomo Boracchi

A very simple CNN

Network Layers are stacked by means of the
.add () method

model.add (Conv2D (filters = 64, kernel size=3,
activation= , input shape=(28,28,1)))

model . add (MaxPooling2D (pool size=(2, 2)))
model .add (Flatten ())
model .add (Dense (10, activation=))

Giacomo Boracchi

Convolutional Layers

Convolutional Layer

model .add (Conv2D (filters = 64, kernel size=3,
activation=’'relu’, input shape=(28,28,1)))

the input are meant to define:
- The number of filters,

- The spatial size of the filter (assumed
squared) , while the depth depends on the network
structure

- the activation layer (always include a
nonlinearity after the convolution)

- the input size: (rows, cols, n _channels)

Giacomo Boracchi

Convolutional Layers

Convolutional Layer

model .add (Conv2D (filters = 64, kernel size=3,
activation=’'relu’, input shape=(28,28,1)))

This layer creates a convolution kernel that
i1s convolved with the layer input to produce a
tensor of outputs.

When using this layer as the first layer in a
model, provide the keyword argument input shape
(tuple of integers, does not include the batch
axis), e.g. input shape=(128, 128, 3) for
128x128 RGB pictures in

data format="channels last".

Giacomo Boracchi

ConvaD help

Arguments
filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution
window. Can be a single integer to specify the same value for all spatial dimensions.

strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and
width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value
I= 1 is incompatible with specifying any dilation_rate value != 1.

padding: one of "valid" or "same" (case-insensitive). Note that "same" is slightly inconsistent across backends
with strides != 1, as described here

data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the
inputs. "channels_last" corresponds to inputs with shape (batch, height, width,

channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults
to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then
it will be "channels_last".

Giacomo Boracchi

ConvaD help

Arguments

dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying
any dilation_rate value != 1 is incompatible with specifying any stride value != 1.

activation: Activation function to use (see activations). If you don't specify anything, no activation is applied
(ie. "linear" activation: a(x) = x).

use_bias: Boolean, whether the layer uses a bias vector.

kernel_initializer: Initializer for the kernel weights matrix (see initializers).

bias_initializer: Initializer for the bias vector (see initializers).

kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).
bias_regularizer: Regularizer function applied to the bias vector (see regularizer).

activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
kernel_constraint: Constraint function applied to the kernel matrix (see constraints).

bias_constraint: Constraint function applied to the bias vector (see constraints).

Giacomo Boracchi

MaxPooling Layers

Maxpooling layer
model . add (MaxPooling2D (pool size=(2, 2)))

the only parameter here is the (spatial) size
to be reduced by the maximum operator

224x224x64
112x112x64

pool
R

A

|

\-

224

—p 112
downsampling
112

Giacomo Boracchi

MaxPooling2D help

Arguments:

pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2)
will halve the input in both spatial dimension. If only one integer is specified, the same window
length will be used for both dimensions.

strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to pool_size.
padding: One of "valid" or "same" (case-insensitive).

data_format: A string, one of channels_last (default) or channels_first. The ordering of the
dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width,
channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It
defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If
you never set it, then it will be "channels_last".

Giacomo Boracchi

MaxPooling2D help

Input shape:

If data_format="channels_last': 4D tensor with shape: (batch_size,
rows, cols, channels)

If data_format="channels_first': 4D tensor with shape: (batch_size,
channels, rows, cols)

Output shape:

If data_format="channels_last': 4D tensor with shape: (batch_size,
pooled_rows, pooled_cols, channels)

If data_format="channels_first': 4D tensor with shape: (batch_size,
channels, pooled_rows, pooled_cols)

Giacomo Boracchi

Fully Connected Layers

at the end the activation maps are “flattened” i.e.
they move from an image to a vector (just unrolling)

model.add (Flatten())

Dense is a Fully Connected layer in a traditional
Neural Network.

model . add (Dense (units=10, activation='softmax’))
Implements:
output = activation(dot(input, kernel) + bias)

 activation is the element-wise activation function
passed as the activation argument,

* kernel is a weights matrix created by the layer,
* bias 1is a bias vector created by the layer

“Units” defines the number of neurons
Giacomo Boracchi

Visualizing the model

a nice output describing the model
architecture

model . summary ()

Giacomo Boracchi

Layer (type) Output Shape Param #

conv2d 7 (Conv2D) (None, 26, 26, 64) 640
flatten 3 (Flatten) (None, 43264) 0
dense 4 (Dense) (None, 10) 432650

Total params: 433,290
Trainable params: 433,290

Non-trainable params: 0

Giacomo Boracchi

Training the Model

Giacomo Boracchi

Compiling the model

Then we need to compile the model using the compile method and
specifying:

e optimizer which controls the learning rate. Adam is generally a
good option as it adjusts the learning rate throughout training.

* loss function the most common choice for classification is
‘categorical_crossentropy’ for our loss function. The lower the better.

e Metric to assess model performance, ‘accuracy’ is more
interpretable

model.compile (optimizer='adam',
loss='categorical crossentropy’',
metrics=['accuracy'])

Giacomo Boracchi

Training the model using

The £it () method of the model is used to train the model.
Specify at least the following inputs:

e training data (input images),

« target data (corresponding labels in categorical format),

« validation data (a pair of data, labels to be used only for computing
validation performance)

« number of epochs (number of times the whole dataset is scanned
during training)

model.fit (X train, y train,
validation data=(X test, y test), epochs=3)

Giacomo Boracchi

Training output

Epoch 22/100

18000/18000 [] - 136s 8ms/step - loss: 0.7567
- acc: 0.6966 - val loss: 1.9446 - val acc: 0.4325

Epoch 23/100

18000/18000 [] - 137s 8ms/step - loss: 0.7520
- acc: 0.6959 - val loss: 1.9646 - val acc: 0.4275

Epoch 24/100

18000/18000 [] - 137s 8ms/step - loss: 0.7442
- acc: 0.7024 - val loss: 1.9067 - val acc: 0.4129

Giacomo Boracchi

Advanced Training Options

Giacomo Boracchi

Callbacks in Keras

A callback is a set of functions to be applied at given stages of the
training procedure.

Callbacks give a view on internal states and statistics of the model
during training.

You can pass a list of callbacks (as the keyword argument callbacks) to
the .fitO) method of the Sequential or Model classes.

The relevant methods of the callbacks will then be called at each stage
of the training.

callback list = [cbl,..,cbN]

model.fit (X train, y train,
validation data=(X test, y test), epochs=3,
callbacks = callback list)

Giacomo Boracchi

Model Checkpoint

Training a network might take up to several hours

Checkpoints are snapshots of the state of the system to be saved in
case of system failure.

When training a deep learning model, the checkpoint is the weights of
the model. These weights can be used to make predictions as is, or
used as the basis for ongoing training.

from keras.callbacks import ModelCheckpoint

[...]

cp = ModelCheckpoint (filepath,

monitor= , verbose=0,

save best only=False, save weilights only=False,
mode= , period=1)

Giacomo Boracchi

Early Stopping

The only stopping criteria when training a Deep Learning model is
“reaching the required number of epochs.”

However, it might be enough to train a model further, as sometimes the
training error decreases but the validation error does not (overfitting)

Checkpoints are used to stop training when a monitored quantity has
stopped improving.
from keras.callbacks import EarlyStopping

[...]

es = EarlyStopping(monitor= ,
min delta=0, patience=0, verbose=0, mode= ,
baseline=None, restore best weights=False)

Giacomo Boracchi

Testing the model

Giacomo Boracchi

Predict() method

#returns the class probabilities for the input
image X test

score = model.predict (X test)

select the class with the largest score

prediction test = np.argmax(score, axis=l)

Giacomo Boracchi

Tensorboard

When training a model it is important to monitor its progresses

Google has developed tensorboard a very useful tool for visualizing
reports.

from keras.callbacks import TensorBoard
[...]

tb = TensorBoard(log dir=)

.. and add tb to the checkpoint list as well

Giacomo Boracchi

	Slide 1: Image Analysis and Computer Vision
	Slide 2: Course Slides
	Slide 3: Colab Folder
	Slide 4: Project Assignment
	Slide 5: Convolutional Neural Netwokrs
	Slide 6: The Feature Extraction Perspective
	Slide 7: The Feature Extraction Perspective
	Slide 8: The Feature Extraction Perspective
	Slide 9: The Feature Extraction Perspective
	Slide 10: Hand-Crafted Features
	Slide 11: Example of Hand-Crafted Features
	Slide 12: Neural Networks
	Slide 13: Neural Networks
	Slide 14: Neural Networks
	Slide 15: Neural Networks
	Slide 17: Image Classification by Hand Crafted Features
	Slide 18: Hand Crafted Featues, pros:
	Slide 19: Hand Crafted Featues, cons:
	Slide 20: Data-Driven Features
	Slide 21: Data-Driven Features
	Slide 22: Convolutional Neural Networks
	Slide 23: Local Linear Filters
	Slide 24: Local Linear Filters
	Slide 25: 2D Correlation
	Slide 26: 2D Convolution
	Slide 27: 2D Convolution
	Slide 28: 2D Convolution
	Slide 29: Convolution: Padding
	Slide 30: Convolution: Padding
	Slide 31: Padding Options in Convolution Animation
	Slide 32: Convolutional Neural Networks
	Slide 33: The typical architecture of a CNN
	Slide 34: The typical architecture of a CNN
	Slide 35: The typical architecture of a CNN
	Slide 36: The typical architecture of a CNN
	Slide 37: The typical architecture of a CNN
	Slide 38: Convolutional Neural Networks (CNN)
	Slide 39: Convolutional Neural Networks (CNN)
	Slide 40: Convolutional Layers
	Slide 41: Convolutional Layers
	Slide 42: Convolutional Layers
	Slide 44: Convolutional Layers
	Slide 45: Convolutional Layers
	Slide 46: Convolutional Layers
	Slide 47: Convolutional Layers
	Slide 48: Convolutional Layers
	Slide 49: Convolutional Layers
	Slide 50: Convolutional Layers, remarks:
	Slide 51: CNN Arithmetic
	Slide 52: CNN Arithmetic
	Slide 53: CNN Arithmetic
	Slide 54: CNN Arithmetic
	Slide 55: CNN Arithmetic
	Slide 56: CNN Arithmetic
	Slide 57: CNN Arithmetic
	Slide 58: CNN Arithmetic
	Slide 59: CNN Arithmetic
	Slide 60: CNN Arithmetic
	Slide 61: CNN Arithmetic
	Slide 62: CNN Arithmetic
	Slide 63: To Recap…
	Slide 64: Other Layers
	Slide 65: Activation Layers
	Slide 66: Activation Layers
	Slide 67: ReLu
	Slide 68: ReLu
	Slide 69: Activation Layers
	Slide 70
	Slide 71: Pooling Layers
	Slide 73: Max-Pooling (MP)
	Slide 74: Strides in Pooling Layers
	Slide 75: Dense Layers
	Slide 76: The Dense Layers
	Slide 77: Convolutional Neural Networks (CNN)
	Slide 78: Convolutional Neural Networks (CNN)
	Slide 79: Convolutional Neural Networks (CNN)
	Slide 80: The typical architecture of a CNN
	Slide 81: The typical architecture of a CNN
	Slide 82: CNN «in action»
	Slide 83: Activations in a convolutional network
	Slide 84: Activations in a convolutional network
	Slide 85: Activations in a convolutional network
	Slide 86: Activations in a convolutional network
	Slide 87: Convolutional Neural Networks (CNN)
	Slide 89: The First CNN
	Slide 90
	Slide 91
	Slide 92: LeNet-5 (1998)
	Slide 93: The First CNN
	Slide 94: LeNet-5 in Keras
	Slide 95: model.summary()
	Slide 97: model.summary()
	Slide 99: model.summary()
	Slide 100: model.summary()
	Slide 101: Most of parameters are in MLP
	Slide 102: Most of parameters are in MLP
	Slide 103: Award Winning CNNs
	Slide 104
	Slide 105
	Slide 106
	Slide 107: AlexNet (2012)
	Slide 108: AlexNet (2012)
	Slide 109: A Breaktrough in Image Classification
	Slide 110: The impact of Deep Learning in Visual Recognition
	Slide 111: AlexNet / Imagenet Images
	Slide 112
	Slide 113: How was this possible?
	Slide 114: Large Collections of Annotated Data
	Slide 115: Parallel Computing Architectures
	Slide 116: And more recently…. Software libraries
	Slide 117: VGG: going deeper!
	Slide 118
	Slide 119: VGG16 (2014)
	Slide 120: VGG16 (2014)
	Slide 121: VGG16 (2014): Smaller Filter, Deeper Network
	Slide 122: VGG16
	Slide 123: VGG16
	Slide 124: VGG16
	Slide 125: VGG16
	Slide 126: MobileNet: Reducing Computational Costs
	Slide 127
	Slide 128: Depth-wise Separable Convolutions
	Slide 129: Latent representation in CNNs
	Slide 130: The typical architecture of a CNN
	Slide 131
	Slide 132
	Slide 133
	Slide 134: t-SNE representation using ℓ sub 2 distance
	Slide 135
	Slide 136: Limited Amount of Data: Data Augmentation
	Slide 137: The need of data
	Slide 138
	Slide 139
	Slide 140: The Challenge
	Slide 141
	Slide 142: The Challenge
	Slide 143: An Example of CNN predictions
	Slide 144: Data Augmentation
	Slide 145: Data Augmentation
	Slide 146: Data Augmentation
	Slide 147: Data Augmentation: Criteria
	Slide 148: Data Augmentation
	Slide 149: Image Augmentation and CNN invariance
	Slide 150: However…
	Slide 151: However…
	Slide 152: However…
	Slide 153: However…
	Slide 154: Test Time Augmentation
	Slide 155: Test Time Augmentation (TTA) or Self-ensembling
	Slide 156: Test Time Augmentation (TTA) or Self-ensembling
	Slide 157: Test Time Augmentation
	Slide 158: Benefits of Data Augmentation
	Slide 159: Image Augmentation and Overfitting
	Slide 160: Image Augmentation and Overfitting
	Slide 162: Mixup Augmentation
	Slide 163: Mixup Augmentation
	Slide 164: Mixup Augmentation, Intuition
	Slide 165: Augmentation In Keras
	Slide 166: Augmentation in Keras
	Slide 167: Augmentation Layers
	Slide 168: Preprocessing Layers
	Slide 169: Augmenting Images
	Slide 170: Augmenting Images
	Slide 171: Training with data augmentation
	Slide 172: Augmentation in Keras (other option)
	Slide 173: Augmentation in Keras: flow from images
	Slide 174: Augmentation in Keras (other option)
	Slide 175: Data Driven Features
	Slide 176: Latent representation in CNNs
	Slide 177: The typical architecture of a CNN
	Slide 178: The typical architecture of a CNN
	Slide 179: Feature Extraction Networks
	Slide 180: Feature Extraction Networks
	Slide 181: Limited Amount of Data: Transfer Learning
	Slide 182: The Rationale Behind Transfer Learning
	Slide 183: The typical architecture of a CNN
	Slide 184: Very Good Features!
	Slide 185: Very Good Features!
	Slide 186: Transfer Learning
	Slide 187: Transfer Learning
	Slide 188: Transfer Learning
	Slide 189: Transfer Learning
	Slide 190: Transfer Learning
	Slide 191: Transfer Learning in the Sealion Case
	Slide 192: Transfer Learning vs Fine Tuning
	Slide 193: Best Practice
	Slide 194
	Slide 195: Transfer Learning In Keras
	Slide 196: Where to find pretrained models?
	Slide 197: Importing Pretrained Models in keras…
	Slide 198: Importing Pretrained Models in keras…
	Slide 199: Importing Pretrained Models in keras…
	Slide 200: How to extract the feature extraction network?
	Slide 201: How to extract the feature extraction network?
	Slide 202: Transfer Learning in Keras…
	Slide 203: An example of model loading
	Slide 204: Transfer Learning: adding the new Network Top
	Slide 205: Transfer Learning: setting layers trainable property
	Slide 206: Image Retrieval From The Latent Space
	Slide 207: Features are Good For Image Retrieval
	Slide 208: Features are Good For Image Retrieval
	Slide 209: Features are Good For Image Retrieval
	Slide 210: Features are Good For Image Retrieval
	Slide 211: 1-NN classification in the latent space
	Slide 212: CNNs in Keras
	Slide 213: What is Keras?
	Slide 214: The software stack
	Slide 215: Why Keras?
	Slide 216: We will manipulate 4D tensors
	Slide 217: Building the Network
	Slide 218: Convolutional Networks in Keras
	Slide 219: A very simple CNN
	Slide 220: Convolutional Layers
	Slide 221: Convolutional Layers
	Slide 222: Conv2D help
	Slide 223: Conv2D help
	Slide 224: MaxPooling Layers
	Slide 225: MaxPooling2D help
	Slide 226: MaxPooling2D help
	Slide 227: Fully Connected Layers
	Slide 228: Visualizing the model
	Slide 229
	Slide 230: Training the Model
	Slide 231: Compiling the model
	Slide 232: Training the model using
	Slide 233: Training output
	Slide 234: Advanced Training Options
	Slide 235: Callbacks in Keras
	Slide 236: Model Checkpoint
	Slide 237: Early Stopping
	Slide 238: Testing the model
	Slide 239: Predict() method
	Slide 240: Tensorboard

