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Course Slides

Slides can be found on my website

https://boracchi.faculty.polimi.it/

and follow Tutorials and Talks

https://boracchi.faculty.polimi.it/seminars.html
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Colab Folder

In this folder you will find, regularly updated
notebooks

https://drive.google.com/drive/folders/10j9orb2

kKogKpLxca-uMejuesy-8RZeD

Notebooks require you to “fill in” some codes
or to extend codes we illustrate during
lectures to new data/new challenges

20600 DL4CV, Boracchi, Magri
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A Machine Learning Take on
Image Understanding



Machine Learning Paradigms

Supervised Learning
* (lassification
* Regression
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Machine Learning Paradigms

Supervised Learning
* (lassification
* Regression

Unsupervised Learning
e (lustering

 Anomaly Detection

T x Oy fi@=y
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Machine Learning Paradigms

Supervised Learning
e C(lassification fo

* Regression
Learning consists is (automatically) defining

the parameters 6 of the model f. orediction
Unsupervised pifferent settings applies, which give rise to the
o Clustering supervised and unsupervised settings

 Anomaly Detection

"o x Oy fid=y
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Supervised Learning

In Supervised Learning we are given a training in the form:
TR = {(x1,¥1), -, (X, Yn)}
where
» x; € R? is the input
* y; € Alis the target, the expected output of the model to x;
The set A can be

« A discrete set, as in classification A = {"brown", "green"”, "blue"}
(e.g., possible eye colors)

« An ordinal set (often continuous set, R) in case of regression.

A can be also multivariate (e.g., regressing weight and height of an
individual or estimating they eye colors and heirs color)
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Motorcycles

TR = {(x1,y1), -, (X, ) }
e x; € RRXCX3 is the input image

 y; €{"car”, "motorcycle"}
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Inference Using the Trained Classifier

Motorcycles

=) Motorcycle



Supervised learning: Regression

Regressor




Training Set for Regressio

28000 S

TR = {(x1,y1), -, (X, ) }
e x; € RRXCX3 is the input image
* Vi ER



Supervised learning: Regression

Regressor




Remarks

« Number of classes can be larger than two (multiclass classification,
e.g., {"car", "motorcycle","truck"} )

 The input size in general needs to be fixed

* The number of outputs for regression can be larger (multivariate
regression, e.g., estimating cost and weight of the vehicle)

* Training a Classifier or a Regressor requires different losses

« Difference between classification or regression is not only on the

fact that A discrete, but whether it is ordinal
« A categorical (no ordinal) -> classification
« A ordinal (either discrete or continuous) -> regression

20600 DL4CV, Boracchi, Magri



Give a few examples of

Classification problem in images

Regression problems on images
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Unupervised Learning

In Unsupervised Learning, the training set contains only inputs,
TR = {xq, ..., Xy}

and the goal is to find structure in the data, like
* grouping or clustering of data points
e estimating probability density distribution

e detecting outliers

20600 DL4CV, Boracchi, Magri



Unsupervised learnin

Clustering




Unsupervised learning: Clustering




Unsupervised learning: Clustering




Unsupervised learning: Clustering




Unsupervised learning: Anomaly Detection




Unupervised Learning

In Unsupervised Learning, the training set contains only inputs,
TR = {xq, ..., Xy}

and the goal is to find structure in the data, like
* grouping or clustering of data points
e estimating probability density distribution

e detecting outliers

We will see that in Deep Learning, Unsupervised learning (or self-
supervised learning) can also be used to learn meaningful
representations of data, to ease classification problem

20600 DL4CV, Boracchi, Magri






Image Classification

A = {"wheel", "cars", ..., "castle", "baboon"}

:'|> “wheel”

“castle”

26



Image Classification

A = {"wheel", "cars", ..., "castle", "baboon"}

j‘>“wheel" 65%, “tyre” 30%..

LA O “castle” 5%, “tower” 43%..

2]



Image Classification, the problem

Assign to an input image x € REX ¢ X3,

* alabel y from a fixed set of categories
A = {"wheel", "cars”, ..., "castle”, "baboon"}

x = fg(x) EA

28



Image Classification Example

4~ rabbit - Google Photos

— Q_ rabbit

Sat, Apr 6 v Thu, Apr 4 v Sat, Apr 9, 2016 v




Is Image Classification a
Challenging Problem?



First challenge: dimensionality

Images are very high-dimensional image data



CIFAR-10 dataset

The CIFAR-10 dataset
contains 60000 images:

Each image is 32x32 RGB
Images are in 10 classes
6000 images per class

Extremely small images, but
high-dimensional:
d=32X%Xx32 X3 =3072

airplane %V)\ V..=&-
automobile E ﬂh‘
e Elmlll W ¥ B
=  HESHNEEEs P
v MBS
v EESISBON R
rog [ I R 2 O W
e IS R
ship ag“ﬁg‘a
truck J'h’iﬂi

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.



http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf




Machine Learning Repository

Center for Machine Leaming and Intelligent Systems

# Attnbutes

Less than 10 (116
10 to 100 (218]
Greater than 100 (26)







Second challenge: label ambiguity

A label might not uniquely identify the image



Second challenge: label ambiguity

Man/
Beer?
Dinner?
Restaurant/
Sausages’




Third challenge: transformations

There are many transformations that change
the image dramatically, while not its label



Cnes in the [llumination Conditions

(1AIR)
‘, >

Giacomo Boracchi




Deformations

el g e
- B -

Copyright Christine Matthews © Copyright Patrick Roper
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View Point Change

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/


http://cs231n.stanford.edu/
http://cs231n.github.io/

... and many others

Occlusion

Scale variation

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

Fourth challenge: inter-class variability

Images in the same class might be
dramatically different



Inter-class variability

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Fifth problem: perceptual similarity

Perceptual similarity in images is not
related to pixel-similarity



Nearest Neighborhood Classifiers for Images

Assign to each test image, the label of the closest image in the training
set

Vi =y, being j* = air:%mlivn d(x;,x;)

Distances are typically measured as

d(xj, ;) = || — x|, = Z:k ([xj]k - [xi]k)

2

Or

\
d(xj, x;) = |xj — x;] = Z:k ij r [xi]k‘



Pixel-wise distance among images

test image

56

32

10

18

training image

90

23
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133
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20

24
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26
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pixel-wise absolute value differences

46 | 12 | 14 | 1

82 | 13 | 39 | 33
12 110 | 0 | 30
2 | 32 | 22 | 108

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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K-Nearest Neighborhood Classifiers for Images

Assign to each test image, the most frequent label among the
K —closest images in the training set

Vi = yj* being j* the mode of UK(xj)

where Uy (x;) contains the K closest training images to Xx;

Setting the parameter K and the distance measure is an issue

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Nearest Neighborhood Classifier (k-NN) for Images

the data 1-NN classifier 5-NN classifier
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k-NN for Images
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k-NN for Images

NN classifier

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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k-NN for Images

9-NN classifier

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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k-NN for Images

Pros:

* Easy to understand and implement
* |t takes no training time

cons:

* Computationally demanding at test time, when TR is large
and d is also large.

* Large training sets must be stored in memory.

e Rarely practical on images: distances on high-dimensional
objects are difficult to interpret.

20600 DL4CV, Boracchi, Magri



Perceptual Similarity vs Pixel Similarity

original shifted messed up darkened

The three images have the same pixel-wise distance from the original
one...

..but perceptually they are very different

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/



http://cs231n.stanford.edu/
http://cs231n.github.io/

Perceptual Similarity vs Pixel Similarity

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Let’s see what happens on the whole CIFAR10 using t-SNE S
i it = A A D o & & W[4 N, P
il oy b, e S I Y o o ) P et Sy e~ (T




On CIFAR10 we see exactly this problem

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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On CIFAR10 we see exactly this problem

- W
™ o g

Using any pixel-wise
distance measure, and in
particular ||x; — x|l to

compare images Is not
appropriate

-

-

' :
& W
o /X . '

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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On CIFAR10 we see exactly this problem

Some special model is needed to

handle images...
we’ll see in the next class!

.,

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Hand-Crafted Features



Assume you need to automatize this process
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Assume you need to automatize this process
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Assume you need to automatize this process
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An lllustrative Example: Parcel Classification

Images acquired from an RGB-D sensor:
* No color information provided

* Images of 3 classes

Envelop height at
e ENVELOPE P &

that pixel DOUBLE
* PARCEL -
° DOUBLE ‘PARCEI‘_ 10.08
ENVELOPE : _-'— | 00
0.2 10 - 0.06
15 §02
10.15 20 1 0.04
25 0.15
0.1 30 ] 0.02
35 | X
0.05 40 0
45 0.05
0 -0.02

10 20 30 40 50 60 70 10 20 30 40 50
10 20 3 40 .
20600 DL4CV, gOI‘&CChI, Magri



An lllustrative Example: Parcel Classification

Images acquired from a RGB-D sensor:

* No color information provided

* A few pixels report depth measurements

* Images of 3 classes

ENVELOPE
PARCEL
DOUBLE

Envelop height at that
pixel

ENVELOPE

-0.2
10

1 0.15

30

0.1
40

0.05

60

70

10 20 30 40 50 60 70

20600 DL4CV, Boracchi, Magri



An lllustrative Example: Parcel Classification

DOUBLE
Images acquired from a RGB-D sensor:
* No color information provided ("

* A few pixels report depth measurements 1 0.06

* Images of 3 classes
 ENVELOPE
* PARCEL
* DOUBLE

0.04

0.02

10 20 30 40
20600 DL4CV, Boracchi, Magri



An lllustrative Example: Parcel Classification

Images acquired from a RGB-D sensor:
* No color information provided

PARCEL

* A few pixels report depth measurements . ——

71 10.25

* Images of 3 classes
 ENVELOPE
* PARCEL
* DOUBLE

-110.2

4189 0.15

| | 0.1

0.05

0

10 20 30 40 50

20600 DL4CV, Boracchi, Magri



Hand Crafted Featues

Engineers:

_iﬁ-_!

* know what’s meaningful in an
image (e.g. a specific color/shape, ENVELOPE
the area, the size)

e can implement algorithms to map
this information in a set of
measurements, a feature vector

Feature Extraction
-

20600 DL4CV, Boracchi, Magri



Hand Crafted Featues I

;'_

ENVELOPE - h average

O
A area
o
= h max :

A IR S
q_) o
= / T perimeter
— ratio
S
L
L

X € R4
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This is exactly what a doctor would to to classify

ECG tracings o
Heartbeats morphology has been widely investigated e

R

Doctors know which patterns are
meaningful for classifying each beat

Features are extracted from e
landmarks indicated by doctors:

e.g. QT distance, RR distance...
S

‘ QT Interval

Created by Agateller (Anthony Atkielski), Public Domain, https://commons.wikimedia.org/w/index.php?curid=1560893



The Training Set

The training set is a set of annotated examples

TR ={(x,y);;i=1,..,N}
Each couple (x,y); = (x;,y;) corresponds to:
 an image x; € RE*X3

* the corresponding label y; € A

20600 DL4CV, Boracchi, Magri



The Training Set: images + labels




The Training Set: images + labels
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The Training Set: features + labels

area
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Set
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O parcel
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X envelope
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Training Set
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Classifier output
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A tree classitying image features

Input image

if (h < 3.5cm)

| 10.08

false true

h if (h > 6.2cm)o ®
|$ . |$ false \ true «envelope»

if (a < 200px)

B B 0.06

0.04 |$

0.02

«Parcel»
false true

-0.02
«envelope» «Double»

X € R?

‘ Feature Extraction Algorithm‘

{557 POLITECNICO MILANO 1863




Limitations of Rule Based Classifier

It is difficult to grasp what are meaningful dependencies over multiple
variables (it is also impossible to visualize these)

Let’s resort to a data-driven model for the only task of separating
feature vectors in different classes.

How can a classifier achieve better performance’

20600 DL4CV, Boracchi, Magri



A tree classifying image features

if (h < 3.5cm)
false true
The classifier has a few

patameters: h [> it (h > 6.2cm) O
. .. false \true «envelope»
* The splitting criteria . f (@ < 20000 ®
* The splitting thresholds T; «Parcel»
false true
«envelope» «Double»
X € R?

20600 DL4CV, Boracchi, Magri
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There are a few errors
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Can | do better?
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Let’s try different parameters

1000 : |
l . : O ‘ | i | % X envelope
900 ] [:1' - [ ] o O I:I: ] [:E « 832:]05'8
N O i - o U o X 0O x x X .
- 100, O |:|D H o O X Xy
700 |- . O ! - 0 i
: O 9
600 - O a : 9 ’
S 5001 O - EIDEI N L ox X X X x
° O a® B 5 OOk X
400 - d§1§) O o o4 . Q: 9 X X, y
| y : y J
" o89e O 1o o X i,
OOOO O % o O 0 % SoX y
O 8 ! O O >2( e » .
100 | @ O o CQODD ----- - e X
Ex xx K oxx X x X Cl§§5|f|cat|on error: 13:7%
00 1 2 ' 3 4 5 6 7 3 9

avg. height



Data Driven Models

They are defined from a training set of supervised pairs
TR = {(x,y);,i=1,..,N}

The model parameters (e.g. Neural Network weights) are set to minimize a
loss function (e.g., the classification error in case of discrete output or the
reconstruction error in case of continuous output)

Can definitvely boost the image classification performance

This is how, during training, the computer learns.
* Annotated training set is always needed
* C(lassification performance depends on the training set

* Generalization is not guaranteed

20600 DL4CV, Boracchi, Magri



Hand Crafted Feature Extraction, data-driven
Classification i:lﬁ
.
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Are there better classifiers?
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Are there better classifiers?
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20- 0 O~ 0. E - X ngxx Neural networks provide
” . .
100/ Qc)xmﬁ 080 SO =X non-linear separation
Q= X .
FPxRT TR xx X x X boundaries among classes
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And Neural Networks are not the only..

1000 "\
| O ’

4 |
.. ' X envelope ‘

Nearest Neighbors

Linear SVM RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes

e .:-foo --:‘l i :

ce, l..f .ﬁ

Nearest Neighbors

Decision Tree

Decision Tree

AdaBoost Naive Bayes

Nearest Neighbors

AdaBoost

Naive Bayes

avg. height



Neural Networks for Feature Classification

Input image
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‘ Feature Extraction Algorithm‘

input layer

Hidden layer(s)
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Input layer: Same size of the

Neural Networks fenture Vector

 The input layer has
the same number
of neurons as the
number of inputs

8@

e This is not a
hyperparameter!

e

X € R4

QQ

input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri



Neural Networks Output layer: Same size

as the number of

 The output size depends classes #/\

on the number of classes
to be predicted (or the
number of outputs in case
of regression).

P(y = "doub."|x)

O

P(y = "env."|x)

 Thisis not a
hyperparameter, this is —

defined by the task!

the output are Q . \
probabilities, in case of Q P(y = "parc."|x)
regression these are real x € R¢

values

- QOO0

* In case of classification,

input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri



Neural Networks

Hidden layers are not
directly connected input or
output (hence their name).

The design of hidden layers
(number of layers, number
or neurons) is a
hyperparameter of the
network.

X € R4

input layer

Hidden layers: arbitrary size

QO0OC

S

5o ¢

Hidden layer(s) Output Layer

20600 DL4CV, Boracchi, Magri



1
W11

Inside Neural Networks

Each connection is associated to

of = tanh( W{fjxj + bi>
a weight j=1:d

/O

k
Wi,j € R

This weight connects:

S
PR
N

« The i*™" input neuron of layer
(k—1)
* The j™ output neuron of
layer kb

QOO

On top of weights there are
biases, one bias per neuron

(1l N O
The parameters of the network d @
are: xeR 0 €ERP

k k
{Wi,j}i,j,k' {bi }i,k input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri



1,1

Neural Networks

k —_— k . .
Each neuron: 0; = tanh w;iXj + b
j=1:d

/O

 Computes a linear
combination of its inputs

S
PR
N

* Applies a nonlinear, scalar
function (here tanh(-))

QOO ,

50,0

input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri
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Neural Networks

Each neuron:

w
 Computes a linear
combination of its inputs Q

* Applies a nonlinear, scalar
function (here tanh(-))

Nonlinearity is mandatory,
otherwise everything will
become a linear combination of

a linear combination... Q Q
o)

Thus, equivalent to a linear x € R4
classifier! 0 € R”

input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri



Neural Networks 1 wi, ol=tanh< w%,,-x,-+b1>
j=1:d

O

Let’s focus on a single neuron
and see what happens while
learning

OO0,
- OE

e ) O
0 € RP

input layer Hidden layer(s) Output Layer
20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

Parameters to
be learned
@ o =tanh(w, *h+w, *a + b)

Input layer Output layer

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

Parameters to
be learned
Let us ignore the nonlinearity for /
a while, as this is not relevant jl>
for a single layer

s=wyxh+w,*xa+b

o = tanh(s)

Input layer Intermediate Output layer
score

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

o )L Parameters to
\ 0 be learned
'
o, /

¥ o 0 O TR
@ s=w;*h+w,*a+b
7

h

What parameters would the classifier learn from this training set?

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

’ O \ Ideal separation line
/

oy a=15h+23
%, O O
v ,’ O

7

h

Thus, the ideal parameters are
wy; = 15w, =—1and b = 23

To define the ideal score function function
s=15+xh—a+ 23

Parameters to
be learned

W1 b

W»

s=w;*h+w,*a+b

20600 DL4CV, Boracchi, Magri



,\At the core of NN: Linear Combinations

Parameters to
be learned
/ O Ideal separation line —
, _ W1
, a=15h+ 23 b

\L, O W-

s=w;*h+w,*a+b

If the training is successful,
the parameters will be
wy = 15w, =—1,b =23

20600 DL4CV, Boracchi, Magri



,\At the core of NN: Linear Combinations

’ O \ Ideal separation line

y 4 a=15h+23 Wi b

oy
/o, S=0
v /7 O W

s=w;*h+w,*a+b

7

h

s=15xh—a+ 23

If the training is successful,
the parameters will be
wy = 15w, =—1,b =23

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

K ’ O \ Ideal separation line
)L

e a=15h+23 W1 b

N 9%)

s=wyxh+w,*xa+b

7

h

s=15xh—a+ 23

If the training is successful,
the parameters should be
wy =15w, =—1,b =23

20600 DL4CV, Boracchi, Magri



<At the core of NN: Linear Combinations

\ 5<<0,
/ O \ Ideal separation line
e a=15h+23 "1 b
)/ S <O
A

W»

¥, O

// OO

/ @ s=wyxh+w,*xa+b
| |

If the training is successful,
the parameters should be
wy =15w, =—1,b =23

s=15xh—a+ 23

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

Y O\ Ideal separation line
a=15h+23 W1 b

// J WZ

- Q
R4 @ s=15«xh—a+ 23
/ Ss=w;*h+w,*a+b

o = tanh(s)
L) 0; 0= tanh(s)

— |

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

R Ideal separation line

/ ‘I’/O a=15h+23
7 W1 b
/// J
o'y, >
7 ol W,
! O s=15+xh—a+23
s=wyxh+w,*xa+b
> o = tanh(s)
h 0;
1 [
S <0 i
S

o 2 -1
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At the core of NN: Linear Combinations

R Ideal separation line

’/O a=15h+23
/// Wl b
/// J
/// (~ J @ j‘> @
// J WZ
// O ('"
y s=15«xh—a+ 23
s=wyxh+w,*xa+b
> o = tanh(s)
h 0;
1 JE—
7
S

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

R Ideal separation line

/ b ’//O a=15h+23
NV /// Wq b
/// J
ey >
7 ol W
) @ s=15%h—a+23
, s=wyxh+w,*xa+b
> o = tanh(s)
h 0;
1— e
Oy 1= X

7

oY -1 = (Q

20600 DL4CV, Boracchi, Magri



At the core of NN: Linear Combinations

‘ , «— ldeal separation line
/ a=15h+23
//
/
/
/
/
/
/
// Q $
// - W7

’ By stacking many of these layers you can learn

more sophisticated decision boundaries! *a+b
7 N o = tanh(s)
h 0?1

Oy 1= X

-

AR Xo,

20600 DL4CV, Boracchi, Magri



Neural Network Training



Training

The process of taking a NN that’s been initialized with
default or random values and gradually improving it
so that it “generalize” well.

20600 DL4CV, Boracchi, Magri



Training, testing

Training set: the data
used to learn the
model parameters

Test set: used only at
the end to perform
final model
assessment

TR = {(x,t);,i =1,..

nput data

LN

Training set

Test set

20600 DL4CV, Boracchi, Magri



Training

Given:

- the training set TR = {(x, t);,i = 1,...,N},

- a Neural Network f(x, W) that depends on a collection of parameters W,

the training optimizes the values of W such that f “learns” the correct
values on the training set.

Before training After training

f(x» Wrand) f(x: Wopt)

> sneaker

pullover

L

20600 DL4CV, Boracchi, Magri



Training

In practice, networks learn by minimizing their mistakes encoded in a
a loss function (the lower the more accurate f is in predicting the
target values t).

For example (mean squared error)

LW, 2, 8) = 7 (FW, %) — £,

The training (hopefully) returns the parameters W of the weights that
minimize the loss (the mistakes on the training set)

20600 DL4CV, Boracchi, Magri



Training

However we don’t care very much on mistakes on the Training Set, we
want that our network can correctly predict labels on unseen data.
We assess our model on the Test Set.

In the metaphor of learning, it is the same difference as «parroting»
the lesson, or really understanding what one has studied.

20600 DL4CV, Boracchi, Magri



Training, testing and validation

Training set: the data
used to learn the model
parameters

Test set: used only at
the end to perform final
model assessment

Validation set: the data
used to perform “model
selection”. The
validation set is also
used to assess stopping
criteria during training.

nput data

Training set

Validation set

Test set

20600 DL4CV, Boracchi, Magri



Training, testing and validation

We want that all the

splits have the same nput data
distribution of the input
data.

Training set Validation set Test set

20600 DL4CV, Boracchi, Magri



Make list of
hyperparameters to try

Validation data

Get next set <

of hyperparameters

A good proxy of the real-world data we can use to

Build classifier

”°m‘“ese“"frpam”““”s deploy the system to test different
Treining (. Tn dassir hyperparameters and perform model selection.
Validation Evaluate this

set | ) classifier with
the validation set

Test l
set

Save evaluation

results

Yes

Get classifier
with the best hyperparameters

-

Evaluate with
the test set

-

Deploy
20600 DL4CV, Boracchi, Magri



Underfitting and overfitting

Idealized Error Curves

Underfitting Overfitting

-

Error

validation error

training error

0 10 20 30 40 o0

Epochs 20600 DL4CV, Boracchi, Magri



Occam’s razor

14

12

10 +

OCCAM'S RAZOR

"WHEN FACED WIMH TWO POoSSELE |
EXPLANATIONS, THE SIMPLER OF
THE TWO 1€ THE ONE MOST 0
LIKELY TO BE TRUE.”

- L I L I
0.0 0.2 0.4 0.6 0.8 1.0
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Under-fitting

20600 DL4CV, Boracchi, Magri



Over-fitting

20600 DL4CV, Boracchi, Magri



Occam’s razor

14

OCCAM'S RAZOR

"WHEN FACED WITH TWO POSSEBLE
EXPLANATIONS, THE SIMPLER OF
THE TWO 1S THE ONE MOST
LIKELY TO BE TRUE."

0.0 0.2 0.4 0.6 0.8 1.0
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How to prevent overfitting?

- early stopping
- add a regularization in the loss
- drop-out

20600 DL4CV, Boracchi, Magri



Network Training

Given:
- the training set TR = {(x,y);,i =1, ...,N},
- a Neural Network fg that depends on a collection of parameters 6,

the training optimizes the values of 8 such that f “learns” the correct
values on the training set.

Before training After training

fgrand (.X') feopt (X)

> sneaker

pullover

L

20600 DL4CV, Boracchi, Magri



Training in Supervised Settings

Networks learn by minimizing a loss function over the training set
TR ={(x,y);,i=1,..,N},

The loss function
L(B, TR) R

returns a number that is low when fg is good at predicting the target y
over the entire TR. The loss function accounts of all the errors on TR.

Network training is an optimization process:
0* = argmin L(6,TR)
6

Namely, finding the parameters 6 of the weights that minimize the loss

20600 DL4CV, Boracchi, Magri



An Important Benefit of Neural Networks

* Losses used can be written and derived w.r.t. the network parameters.

* You do not simply know “the value of L(6,TR)” for a given value of 6,
but you also know VL(0,TR), which tells you how to modify @ to
reduce the value of the loss.

« Network training (namely parameters optimization) can be performed by
Gradient Descent

g+l — g(i) _ yVL(H(i),TR)

This iterative procedure converges to a local minima of the loss function (no
guarantees of hitting the global minima). The y > 0 parameter regulates
the convergence speed and needs to be carefully adjusted to prevent the
procedure to diverge

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.
Lo |

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

Lo 0! inizialized at random
or by special procedures

gD o

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem

6" =

argmin L(0,TR)
o

This is solved by an iterative procedure: gradient descent.

Lg

Ly

Test many images and
((9((3 ¢, ) compulte the loss
at 8+, namely
Ll — L(Gl, TR)

- =~ m _— - __ e

F1O) o

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

Lg We also get the gradient for
this value of the loss
0 VL(OL, TR)
/7(%(9((9 ) which indicates in which
direction the loss
will decrease

Ly

gD o

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

Lg Next parameter, 82 is
chosen accordingly
Lyf
./: 0% =01 —y VL(OL, TR)

c
. This is gradient descent,
( y is the learning rate

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimizatio

n problem

0* = argmin L(6,TR)
o

This is solved by an iterative procedure: gradient descent.

Lg

L,

Test images and compute
the loss £,
L(0?% TR)

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem

0* = argmin L(6,TR)
o

This is solved by an iterative procedure: gradient descent.

Lg

L,

- — — —_— —_— 7
(

l
l
(

0@

g (1)

Get the gradient at 6(%
VL(62,TR)

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

Lo Choose 83 accordingly

e

03 0@ gl o

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem

9*

argmin L(0,TR)
o

This is solved by an iterative procedure: gradient descent.

Lg

Lj

Get the gradient at ()

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
9*

argmin L(0,TR)
o

This is solved by an iterative procedure: gradient descent.

Lg

lterate 8 and possibly
many times

g(3)

g4

g (2)

g (1)

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0
This is solved by an iterative procedure: gradient descent.

Lg Once you get to a point
. where gradient is zero,
o stop!

e ° IVL(6™, TR)|| ~ 0

93 @ g@ g o
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The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

Lg This is how we minimize

the loss function
L(6)

93 @ g@ g o

20600 DL4CV, Boracchi, Magri



The Network Training

It’s an optimization problem
0* = argmin L(6,TR)
0

This is solved by an iterative procedure: gradient descent.

LG A R
0 is the network parameter

D)
)

20600 DL4CV, Boracchi, Magri



Do | need to take care of this process’

Of couse not!
learning rate = 0.5

optimizer = tfk.optimizers.SGD (learning rate)

The optimization process adjusts the learning rate y, which is how much to trust
the gradient in each iteration.

20600 DL4CV, Boracchi, Magri



Do | need to take care of this process’

There are optimizers implemented that can adjust the step size to prevent the
procedure to diverge, adopt momentum etc..

The most popular one is Adam optimizer

learning rate = le-3

opt = tfk.optimizers.Adam(learning rate)

20600 DL4CV, Boracchi, Magri



Loss during training

LOSS Loss
04 4 Training loss
0.3 1
0.2
0.1
EI} 5:2} llZ;I'D 15|D EEI}G Eéﬂ
epochs

(the number of times
the entire training set is
being scanned)
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Training Losses



Training in Supervised Settings

The MSE (Mean Squared Error) is the most popular loss for regression:

N
1
LOTR) =+ (fo(x) = 31’
=1

The loss measures how far the predictions f(x;) are from the
corresponding target y;

In keras: tfk.losses.MeanSquaredError ()

20600 DL4CV, Boracchi, Magri



Training in Supervised Settings

The most famous classification losses are different

Binary Cross-entropy (when y € {0,1})
N
1
L(6,TR) = NZ(yi log(fo(x;)) + (1 —y;)log(1 — fo(x)))
i=1

To minimize the loss, you want to minimize each summand, thus

* fo(x)) = 0O wheny; =0

* fo(x)) = Lwheny; =1

In keras: tfk.losses.BinaryCrossentropy ()

20600 DL4CV, Boracchi, Magri



Training in Supervised Settings

In case of multi-class classification we have the

Categorical Cross-entropy, when #A > 2:
N #A

1
LO.TR) =~ > > [yil;log(Ifs (x0)]))
=1 j

Where [y;]; is the j™ component of the vector y;

This means you want the network to return a vector fy(x;) having
* [fo(x))]; = 0 when [y;]; =0, i.e., low probability to the wrong class
* [fo(x)]; = 1 when [y;]; =1, i.e., high probability to the correct class

In keras: tfk.losses.CategoricalCrossentropy ()

20600 DL4CV, Boracchi, Magri



Performance Assessment



Training

However we don’t care very much on mistakes on the Training Set, we
want that our network can correctly predict labels on unseen data.
We assess our model on the Test Set.

In the metaphor of learning, it is the same difference as «parroting»
the lesson, or really understanding what one has studied.

20600 DL4CV, Boracchi, Magri



Training, testing
TR ={(x,y);,i=1,..,N}
Training set: the data

used to learn the model
parameters

nput data

Test set: used only at the
end to perform final
model assessment

The test should be used
only when all the
parameters are fixed, to
assess how good the
model can generalize

Training set Test set

20600 DL4CV, Boracchi, Magri



Training, testing and validation

Training set: the data

used to learn the nput data
model parameters
Test set: used only at

the end to perform
final model
assessment

Validation set: the
data used to perform
“model selection”

Training set Validation set Test set

20600 DL4CV, Boracchi, Magri



Training, testing and validation

We want that all the splits have
the same distribution of the nput data

input data. | |

Cross-Validation:
Parameters are optimized using
* Training set

 Validation set

Network performance is Training set Validation set Test set
assessed on the independent
test set

20600 DL4CV, Boracchi, Magri



K-fold Cross-Validation

This is meant to use the entire dataset for performance assessment

Split 1
Split 2
Split 3
Split 4

Split 5

All Data
Training data Test data
Foldl || Fold2 | Fold3 || Fold4 | Fold5 |
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
| > Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 | /

Final evaluation {

Test data

kfold = KFold(n splits=num folds, shuffle=True, random state=seed)

20600 DL4CV, Boracchi, Magri



K-fold Cross-Validation

This is meant to use the entire dataset for performance assessment

K-fold cross validation can be

extended in two directions:

e Leave-one-out cross
validation, where you use
as test set a single sample
(and train N — 1 models)

* Split is ruled by specific
criteria rather than random
to assess the generalization
performance: e.g., stratified
cross-validation, leave-one-
patient-out

Split 1
Split 2
Split 3
Split 4

Split 5

All Data
Training data Test data
Foldl || Fold2 | Fold3 || Fold4 | Fold5 |
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 | /

Final evaluation {

Test data

kfold = KFold(n splits=num folds, shuffle=True, random state=seed)

20600 DL4CV, Boracchi, Magri



Overfitting and Countermeasures



Error

Underfitting and overfitting

Idealized Error Curves

Underfitting Overfitting
Overfitting networRs show

a monotone training error
trend (on average
with SGD) as the number
of gradient descent
iterations, but they lose
generalization at some
point ...

validation error
training error

10 20 30 40 o0

Epochs . .
20600 DL4CV, Boracchi, Magri



What happens with the data’

20600 DL4CV, Boracchi, Magri



Under-fitting

20600 DL4CV, Boracchi, Magri



Over-fitting

20600 DL4CV, Boracchi, Magri



Solution to Prevent Overfitting

The most common strategies to prevent overfitting when training NN:
e early stopping
* add a regularization term to the loss

e drop-out

20600 DL4CV, Boracchi, Magri



Early Stopping

Stop the training process when the validation error stops decreasing
Loss

Loss
Training loss
0.020 - Validation loss
0.015 -
0.010 -
0 200 400 600 800 1000
. . epochs
patience = 150 #number of epochs to wait P

early stopping = tfk.callbacks.EarlyStopping(monitor='val mse',
mode='min', patience=patience,restore best weights=True)

callbacks = [ stopping ]

20600 DL4CV, Boracchi, Magri




0.022

Early Stopping

Mean Squared Error

0.020 -

0.018 1

0.016 -

0.014 -

0.012

Baseline

Training is stopped here,
after waiting 150 epochs

We select the parameters
of this model minimizing the
validation error

0 100

200 300 400
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Regularization (on the loss side)

14

OCCAM'S RAZOR

"WHEN FACED WIMH TWO POoSSELE
EXPLAMATIONS, THE SIMPLER OF
THE TWO 1S THE ONE MOST 0
LIKELY TO BE TRUE.”

0.0 0.2 0.4 0.6 0.8 1.0
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Regularization loss

Loss seen so far includes only data-fidelity term, thus tend to return

models that can explain data at best.
N
1
LO,TR) =+ ) (folx) =31’
i=1

This promotes overly complex models.

Add a term to the loss to penalize model complexity

N
1
L(O,TR) = Nz:(fe (x;) —y)* + A R(0)
i=1
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Popular Regularizer

Ridge regression
N
1
L6, TR) =5 ) (folx) = y)? + 216113
i=1

In gradient descent, @+ = 9W —yvL(6W, TR) this adds a term
— 248, which implies that weights tend towards zero. Therefore, this
procedure is also called weight decay.

In keras, you need to add this parameter to each layer
output layer = tfkl.Dense (units=1l,name='Output’,
kernel regularizer=tf.keras.regularizers.1l2(1l2 lambda)) (

hidden activation)
20600 DL4CV, Boracchi, Magri



Popular Regularizer

Lasso
1 N
L6 TR) =5 ) (folx) =y + A6l
=1

This tend to have sparse solutions, where many parameters (or
network weights) are zero, and few are not.

In keras, you need to add this parameter to each layer

output layer = tfkl.Dense (units=1l,name='Output’,
kernel regularizer=tf.keras.regularizers.ll(ll lambda)) (

hidden activation)
- 20600 DL4CV, Boracchi, Magri



Popular Regularizer

Elastic Net
1 N
L, TR) = = > (o) = y)? + A0l + ullolI3
=1

This tend to have yet sparse solutions but with a smoother loss
function (J|-||; is not differentiable in zero).

In keras, you need to add this parameter to each layer

output layer = tfkl.Dense (units=1,name='Output’,
kernel regularizer=tf.keras.regularizers.LlL2(1ll lambda,
12 lambda)) (hidden activation)

20600 DL4CV, Boracchi, Magri



Dropout: Stochastic Regularization

By turning off randomly some neurons we force to learn an independent
feature preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p; probability, e.g., p; = 0.3

“0 g1 (x|w)
@ gr (x|w)

Slide credits Prof. Matteucci
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Dropout: Stochastic Regularization

By turning off randomly some neurons we force to learn an independent
feature preventing hidden units to rely on other units (co-adaptation):

* Each hidden unit is set to zero with p; probability, e.g., p; = 0.3
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Dropout: Stochastic Regularization

Dropout trains weaker classifiers, on different mini- batches and then
at test time we implicitly average the responses of all ensemble
members.

Slide credits Prof. Matteucci



Dropout: Stochastic Regularization

Dropout trains weakRer classifiers, on different mini- batches and then at
test time we implicitly average the responses of all ensemble members.

At testing time we remove masks and average output (by weight scaling)

“a g1Celw) Behaves as an
ensemble method

AP

Slide credits Prof. Matteucci



Dropout: Stochastic Regularization

Dropout complements the other regularization methods.

In keras, you just add a layer to the network

dropout = tfkl.Dropout (dropout rate,
seed=seed) (hidden activation)

Slide credits Prof. Matteucci



Data Preprocessing



Preprocessing

In general, normalization can improve convergence of gradient-based
optimizers.

Normalization is meant to bring training data “around the origin” and
possibly further rescale the data

In practice, optimization on pre-processed data is made easier and
results are less sensitive to perturbations in the parameters

There are several options

20600 DL4CV, Boracchi, Magri



There are different form of preprocessing

original data zero-centered data normalized data
10 10 10
g : A
5 .\:, 5 5
0 — 0 - 0
. :. ' -
-10 s : -10 -10

~10 -5 0 5 14 -10 -5 0 S 19 -10 -3 0 S 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

This option brings the data to zero mean and unitary variance along each component

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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There are different form of preprocessing

This option brings the data to the range [—1,1] in each component
max df = X train.max()
min df = X train.min()

X train val
min df)

X train

(X train val - min df)/(max df -

(X train - min df)/(max df - min df)

Watch out:

* You might want to scale also the target in case of regression, as too large
component might dominate when computing the error.

* This normalization might heavily suffer of outliers!

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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PCA - based preprocessing

This is performed after having «zero-centered» the data

10

~10

original data

-10

19

-10

decorrelated data

10

-10 -3 0 5 19

diagonal covariance matrix

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

10

~-10

whitened data

~-10

-5 0 S 10

covariance = identity


http://cs231n.stanford.edu/
http://cs231n.github.io/

Preprocessing and Training

Any preprocessing statistics (e.g. the data mean) must be computed
on training data, and applied to the validation / test data.

Do not normalize first and then split in training, validation, test

Normalization statistics are parameters of your ML model



TODO:
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Colab Notebooks

First Colab Notebook is
Feedforward Neural Network.ipynb

This is already prepared notebook to show you

* how to assemble Neural Networks (MLP) for classifying tabular data
(IRIS DATA)

e How to train Neural Networks on tabular data

 How to assess performance of Neural Networks

You will then be asked to replicate the same on penguin dataset

20600 DL4CV, Boracchi, Magri


https://colab.research.google.com/drive/1mWQqjFyGOYJ1mAGty2p6PwhJ_zYgtQgY#scrollTo=AoaLQpvChLpb

Colab Notebooks

The second Colab Notebook implements the parcel classification
problem: 2023 _Lez_03_handcrafted_feature_classifier_parcel.ipynb

Training image index 181 has shape (53, 53) and label PARCEL
Training image index 91 has shape (67, 66) and label PARCEL
Training image index 149 has shape (57, 77) and label DOUBLE
Training image index 116 has shape (65, 62) and label DOUBLE
Training image index 228 has shape (74, 64) and label DOUBLE
Training image index 73 has shape (39, 34) and label PARCEL
Training image index 138 has shape (68, 93) and label DOUBLE
Training image index 94 has shape (69, 51) and label PARCEL

PARCEL PARCEL DOUBLE



https://colab.research.google.com/drive/1VYmUE-P-Tynm0ek8Nk7xMlDIW8fomBTD#scrollTo=8yAZkmO_SdPr

Colab Notebooks

The script is operational, but:

 Implement additional hand-crafted features in the function
makefeatures

 Implement one of the following classifiers
* Neural Network (refer to the notebook on feed-forward NN)
* k-nearest neighbor
 Decision Three

20600 DL4CV, Boracchi, Magri



Let’s go back to Image
Classification

Giacomo Boracchi
giacomo.boracchi@unibocconi.it
February 14" 2024

UEM, Maputo
https://boracchi.faculty.polimi.it

20600 DL4CV, Boracchi, Magri
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Image Classification by Hand Crafted Features

Input image

0.08

10 20 30 40

I]_ E ]:er XC1

‘ Feature Extraction Algorithm‘

Hand Crafted Data Driven



Hand Crafted Featues, pros:

* Exploit a priori / expert information

 Features are interpretable (you might understand why they are not
working)

* You can adjust features to improve your performance
* Limited amount of training data needed
* You can give more relevance to some features

20600 DL4CV, Boracchi, Magri



Hand Crafted Featues, cons:

* Requires a lot of design/programming efforts

* Not viable in many visual recognition tasks that are easily performed by
humans (e.g. when dealing with natural images)

 Risk of overfitting the training set used in the feature design
* Not very general and "portable”

20600 DL4CV, Boracchi, Magri



take the parcel features
o R apart

What is Deep Learning after all? g
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What is Deep Learning after all?

10

20 30 40

Hand-crafted
Features

Machine learns how . to
take the parcel features
apart

Learned
Classifier

double

Sometimes the decision
might be more complex

v

Area
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What is Deep Learning after all?

Machine learns how to
take the Iris apart

Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes

.'g:a‘o- ¢
o $% e gl
ce, '.f.%

LE P

,:' o!

Nearest Neighbors Decision Tree AdaBoost

- .82

Nearest Neighbors RBF SVM Decision Tree Random Forest AdaBoost Naive Bayes

SepaIVLenght
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What is Deep Learning after all?

10

20
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40

Learned
Classifier

o0 Hand-crafted
- Features

double
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10 20 30 40 & ‘ Sometimes the decision
T might be Impossible!
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What is Deep Learning

Hand-crafted
Features

g

A
0.02
< @
10 20 30 40
.20
Q
T ® o
®
® i
. gl
@
®

.

This happens if you do
not Rnow which features
to extract!!!

m
/

Learned
Classifier

® @®
3 - Sometimes the decision
«c 0 might be Impossible!
o ©
< [
o e ¢
&
.- - o
i3
&

v

Area
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Data Driven Features



Data-Driven Features
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Input image
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Deep Learning A i

the task!

Learned
Classifier

Machine Learned
Features

) double

Easier to learn!

10 20 30 40

Height

v

Area



Hierarchical representation

optimized for the task!

Learned Learned Learned
features features features

4\ \\\Learned
/é& Classitier m=) double

10 20 30 40

Deep Learning is about learning
data representation from data!

But which data?

—




Linear Classifier

the basic building block for deep architectures

20600 DL4CV, Boracchi, Magri



How to feed images to NN/

input layer Hidden layer(s)
20600 DL4CV, Boracchi, Magri



Column-wise unfolding

Colors recall the color plane where

images are from
23

21

\b 34

\\:i‘f
T

x € R4

d=RXC(C X3

20600 DL4CV, Boracchi, Magri



Classification over the CIFAR-10 dataset

=S~ ~ S

The CIFAR-10 dataset Slirplane
contains 60000 images: automobile E:
 Each image is 32x32 RGB bird ﬁ;

* |Images are in 10 classes cat

* 6000 images per class ~ deer

X € Rd,d = 3072 frog

ship

S| el A0 B N &

truck

> v Vi .
ENRATEEENEE
NeREEEE S ¥ 2L

» & .‘" w :

‘\ E Py ‘ ' 4"
i ALK

o 3e] ol of el

imﬂl&lﬂﬂ
llElﬁQHaﬂ

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.



http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

A 1-layer NN to Classify Images

w; ; is the weight associated to
the i-th neuron of the input when

— computing the value at the j-th
output neuron
«Dog score»
/ —
\ Q
Q
@ Wy 1 «Cat score» 7
D
wn
[...] [...]
x € R4 ‘ «Horse score»
WL,d

input layer Output Layer 20600 DL4CV, Boracchi, Magri



A 1-layer NN to Classify Images

S
[

Sl —
Wi,2 j=1:d

leij + b1

«Dog score»

- Q
\‘Q «Cat score» &
W1 &
Wi,d %
[...] [..]
x € R4 ‘ «Horse score»
WL.d

input layer Output Layer 20600 DL4CV, Boracchi, Magri



model.summary();

Layer (type) Output Shape Param #
Input (Inputlayer) [ (None, 32, 32, 3)] 0
Flatten (Flatten) (None, 3072) 0
Output (Dense) (None, 10) 30730

Total params: 30,730
Trainable params: 30,730

Non-trainable params: O



Why don’t we take a larger network?

Dimensionality prevents us from using in a straightforward manner
deep NN as those seen so far.

Let’s take a network with an hidden layer having half of the neurons of
the input layer.

On CIFAR10 images, the number of neurons would be:

e 3072 first layer
1,536 * 3,072 + 1,536 = 4,720,128 parameters (!)
* 1536 second layer

10% 1,536 + 10 = 15,370 parameters
* 10 output layer

20600 DL4CV, Boracchi, Magri



A 1-layer NN to Classify Images

X € R4

O+ QOO0

input layer

W11

Rmk: we can arrange weights in a matrix W € RX*¢, then the
scores of the i-th class is given by inner product between the
matrix rows Wi,: ] and x. Scores then becomes:

Si:W[i,:]*x+bi

«Dog score» Rmk: nonlinearity is

=~
= not needed here
«Cat score» & since there are no
Wy 1 v layers following

‘ «Horse score»  pmk: we can also ignore the
softmax in the output since
this would not change the
order of the scores (would

just normalize them)

Output Layer
20600 DL4CV, Boracchi, Magri



A 1-layer NN to Classify Images

23

W € RLXd
8.1 ... | 2.7 | 9.5 -9.0 | -5.4 4.8
9.0 5.4 | 4.8 1.2 | 9.5 -8.0
1.2 9.5 | -8.0 8.1 | -2.7 9.5

21

Rmk: colors indicate
to which color plane
in the image these
weights refer to

34

12

34

23

9 4 | S1 dog score
+ 32 — | 22 | S cat score

-1 33 | S3 horse score

b K(x;W,b)

Unroll the image
column-wise

20600 DL4CV, Boracchi, Magri



A 1-layer NN to Classify Images

W € RLXd
W) Fea | 2.7 | 9.5 -9.0 | -5.4 4.8
Wl 90| .. | 54| a8 1.2 | 9.5 -8.0 *
Wi, [ 12| . | 9.5 | -8.0 8.1 | -2.7 9.5
Rmk: colors indicate ©-~ - \VJE':-‘] i
to which color plane o. . - =0 Sq-= W[t]-X + &1
in the image these O- S
weights refer to o- “- 4 . ]
0 7 O Spe WRilx th
/
/
o 0 S5, = WI3:]xeb

23

21

34

12

34

23

9 4 | S1 dog score
+ 32 — | 22 | S cat score

-1 33 | S3 horse score

b K(x;W,b)

Unroll the image
column-wise
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This simple layer is a linear classifier

In linear classification K is a linear function:
K(x)=Wx+b

where W € RX*4 b € RE are the parameters of the classifier K.

23

W are referred to as the weig
-8.1 2.7 | 9.5 -90.0 | -5.4 4.8
~ 9.0 5.4 | 4.8 1.2 | 9.5 -8.0
1.2 9.5 | -8.0 8.1 | -2.7 9.5
w

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

21

34

12

34

23

_|_

Unroll the image
column-wise

nts, b the bias vector.

-2

32

4 | S1 dog score

— | 22 | S, cat score

33 | S3 rabbit score
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This simple layer is a linear classifier

The classifier assign to an input image the class corresponding to the

largest score

yj = argmax [S]]
i=1,.,L

being [s;]. the i —th component of the vector
iK(x) =s= Wx+b

81| ... | 27]195 ]| ... |-9.0]|-54 4.8 23 -2
9.0 | .. 5.4 | 4.8 | .. 1.2 | 9.5 | .. |-8.0 % + | 32
1.2 9.5 | -8.0 | .. 8.1 | -2.7 | .. 9.5 21 -1

w 34 b

Rmk: softmax is not needed as long as we
take as output the largest score: this would be
the one yielding the largest posterior

12

34| X

4 | S1 dog score

22 | S, cat score

33 | s3 horse score

K(x;W,b)

20600 DL4CV, Boracchi, Magri



The Parameters of a Linear Classifier

The score of a class is the weighted sum of all the image pixels.

Weights are actually the classifier parameters.
The weights are:

32

-8.1 2.7 | 9.5 -0.0 | -5.4 4.8
9.0 5.4 | 4.8 1.2 | 9.5 -8.0
1.2 9.5 | -8.0 8.1 | -2.7 9.5

and indicate which are the most important pixels / colours

20600 DL4CV, Boracchi, Magri



Why nonlinear layers?

Each layer in a NN can be seen as matrix multiplication (+ bias).
s= Wx+b

If we stack 3 layers without activations:
S = ((Wlx ~+ bl)WZ + bz)Wg + b3
This becomes equivalent to
s= Wx+b

This is a further confirmation why it becomes pointless to stack many
layers without including a nonlinear activations...

20600 DL4CV, Boracchi, Magri



Training the Linear Classifier



Training a Classifier

Given a training set TR and a loss function, define the parameters that
minimize the loss function over the whole TR

In case of linear classifier

[W,b] = argmin z Ly p(x,¥;)
WeRLxd pe RL (x,yDETR

Solving this minimization problem provides the weights of our classifier

20600 DL4CV, Boracchi, Magri



Loss Function

Loss function: a function £ that measures our unhappiness with the
score assigned to training images

The loss L will be high on a training image that is not correctly
classifier, low otherwise.

20600 DL4CV, Boracchi, Magri



Loss Function Minimization

Loss function can be minimized by gradient descent and all its variants
(see Prof. Matteucci classes)

The loss function has to be typically regularized to achieve a unique
solution satisfying some desired property

|[W,b] = argmin z Ly p(x,y;) + AR(W, b)
weRLxd  pe RL (x,yDETR

being A > 0 a parameter balancing the two terms

20600 DL4CV, Boracchi, Magri



.. Once Trained

The training data is usec

The classifier is expectec
larger than that assignec

Once the training is com
training set and keep on

to learn the parameters W, b

to assign to the correct class a score that is

to the incorrect classes.

-8.1 2.7 | 9.5 -9.0 | -5.4 4.8
9.0 5.4 | 4.8 1.2 | 9.5 -8.0
1.2 9.5 | -8.0 8.1 | -2.7 9.5

32

nleted, it is possible to discard the whole
y the learned parameters.
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Geometric Interpretation of a Linear Classifier

WIi,: | is a d —dimensional vector containing the weights of the score
function for the i-th class.

Computing the score function for the i —th class corresponds to computing
the inner product (and summing the bias)
W[l, !] * X + bi

Thus, the NN computes the inner products against L different weights
vectors, and selects the one yielding the largest score (up to bias correction)

Rmk: these “inner product classifiers” operate independently, and the output
of the j-th row is not influenced weights at a different row

Rmk: this would not be the case if the network had hidden layer that would
mix the outputs of intermediate layers

20600 DL4CV, Boracchi, Magri



Geometric Interpretation of a Linear Classifier

In Python notation:

In Python * denotes the element-wise product, here | mean the inner

product of vectors:
np.inner(W|i,: ], x) + b;

20600 DL4CV, Boracchi, Magri



Geometric Interpretation

Interpret each image as a point in R%.

Each classifier is a weighted sum of pixels, which corresponds to a
linear function in R4
In R? these would be

fxy,x2]) = wixg +wox, + b

Then, points [x4, x,] vielding
fxy,22]) =0

would be lines airplane classifie/ &

Thus, in R? the region that separates positive .
from negative scores for each class is a line. m
This region becomes an hyperplane in R4

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/

car classifier
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Template Matching Interpretation

In Python notation:

« WIi,:]is ad —dimensional vector containing the weights of the score
function for the i —th class

 Computing the score function for the i —th class corresponds to
computing the inner product

W[i,:]*x+bi

Then, W[i,:] can be seen as a template used in matching (the output of
correlation in the central pixel)

The template W(i,:) is learned to match at best images belonging to the
i —th class

Let’s have a look at these templates

20600 DL4CV, Boracchi, Magri



Correlation between two RGB images

The image and the filter have the same size

/A

6" o,°) +t
s \ Lér*4f>l')
(KI “4"> (o)

T« "\/4')(
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Bring the classifier weights back to images

w

d= RX(C X3

9.5]| WT[i,:] € R%, car classifier

—

RXxC RXC RXxC .
ReR GER EeR car template in REX¢X3

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/ 20600 DL4CV, Boracchi, Magri
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Templates Learned on the CIFAR-10 dataset

plane car bird cat deer

horse

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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The Class Score

The classification score is then computed as the correlation between
each input image and the «template» of the coresponding class

plane

IR®TION = ) Tyy)I(xy)

(x,y)EU

20600 DL4CV, Boracchi, Magri



Templates Learned on the CIFAR-10 dataset

ship plane

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Templates Learned on the CIFAR-10 dataset

car truck

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Templates Learned on the CIFAR-10 dataset

deer berd

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Templates Learned on the CIFAR-10 dataset
horse

CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/
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Linear Classifier as a Template Matching

What has the classifier learned?
« That the background of bird and frog is green, (plane and boat is blue)
e (ars are typically red

* Horses have two heads! ©

The model was definitively too simple / data were not enough for achieving
higher performance and better templates

However:
 Linear Classifiers are among the most important layer of NN

e Such a simple model can be interpreted (with more sophisticated models
you typically can’t)

20600 DL4CV, Boracchi, Magri



Linear Classifier as a Template Matching

What has the classifier learned? @

 That the background of bird and frog is ¢~ and boat is blue)

e (ars are typically red \Qé\

. >
Horses have two heads! © & \6\
SIS
The model was definitively - c;q\g ,bg\ data were not enough for achieving
higher performance and (@ ~ (S ates

\N
&t «O
However: '\K\ s\
 Linear Classifiers are .1g the most important layer of NN

e Such a simple model can be interpreted (with more sophisticated models
you typically can’t)

20600 DL4CV, Boracchi, Magri



Do it yourself!

https://colab.research.google.com/drive/1kflPH3CDgnvk1|ptUoCbp2LK-
owoh6R37usp=sharing

airplane automobile bird cat deer

Credits Eugenio Lomurno! (visualization with clipped colors)

20600 DL4CV, Boracchi, Magri
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