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https://boracchi.faculty.polimi.it/seminars.html
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Colab Folder

In this folder you will find, regularly updated
notebooks

https://drive.google.com/drive/folders/1)XY-
31r6MYzWs53xIxcg4hERx3lwZawQsk?/usp=sharing

e

or to extend codes we illustrate during a. .

o

Notebooks require you to “fill in” some codes

lectures to new data/new challenges
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Local Spatial Transformations:
fransformations taking as input a set of
intensities and returning a single intensity
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Local (Spatial) Transformation

Operate locally “around” the neighborhood U of a given pixel.
In general, they can be written as
G(r,c) =TylI](r,c)
Where
is the input image to be transformed

is the output

is a neighbourhood, identifies a region of the image that will concur in the
output definition

e Ty: R3 > R3or Ty: R3 > Ris a function

The output at pixel (1, c) i.e., Ty[I] (1, c) is defined by all the intensity values:
{I(u;v)) (u — T,V — C) € U}
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Local (Spatial) Filters

The dashed square represents {I(u,v), (u—r,v—-c) € U}

I TylI]

, (1,0) (r,c)

| ® |

| | V\

.

U
TylIl(r, c)
Input Image Output Image
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Local (Spatial) Filters

The dashed square represents {I(u,v), (u—r,v—-c) € U}

I TylI]
L (1,0) T (r,¢)
| ® |
| |
.
U
Input Image Output Image
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Local (Spatial) Filters

The dashed square represents {I(u,v), (u—r,v—-c) € U}

\ (r.a)

}

! 4

I

And (u,v) has to be interpreted as a "

center (r,c), e.g., (u,v) € {(1,-1),(1,0),(1,-1) ...}

(r,¢)

Tyll]

" w.r.t. the neighborhood
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Local (Spatial) Filters

The location of the output does not change

(r,¢)

(r', c")

Space invariant transformations are repeated for each pixel (don’t depend on the value of r, ¢)

T can be either linear or nonlinear
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Local Linear Filters

Linear Transformation: Linearity implies that the T|Il(r,c) is a
linear combination of the pixels in U:

2.

(u,v)eu c

Considering some weights {w;} g AL
L~ T L
A rd -
We can consider weights as an 17 vd”dPs
: . 1 1 1 L
image, or a filter h M 28 =8
. . . . r // L ///

The filter h entirely defines this T+ T

operation jrg T
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Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix w

w
w(=1,-1)| w(=10) | w(-1,1)
w(0,-1) | w(0,0) | w(0o,1)
w(l,-1D)| w(1,0) | w(,1)

2.

(u,v)eu

This operation is

repeated for each

pixel in the input
image

-

N

/'/* *\
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Correlation

The correlation among a filter w = {w;;} and an image is defined as

(I Qw)(r,c) = i i w(u,v) *

w(=1,-1) | w(=1,0)

w(—1,1)

w(0,0)

w(0,1)

w(1,0)

w(l,1)

Point-wise
product

e S

u=-L v=-L

where the filter h is of size (2L + 1) X (2L + 1) and contains the weights
defined before as w. The filter w is also sometimes called “kernel”

I(r,c)

I(r+0c+1

N

w0, *I(r+0c+1)

Sum
—

(I @ w)(r, c)
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Correlation

The correlation among a filter w = {w;;} and an image is defined as

(I@W)(re) = )

L

u=-L v=-L

L
z w(u,v) *I(r +u,c + v)

np.sum(np.multiply(region,w))

w(=1,-1) | w(-1,0)

w(—1,1)

w(0,0)

w(0,1)

w(1,0)

w(l,1)

Point-wise
product

e S

I(r,c)

I(r+0c+1

N

w0, *I(r+0c+1)

Sum
—

(I @ w)(r, c)
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Correlation

= 0;

i in np.arange (template height)

jJ in np.aragne (template width)
acc = acc + imagel[y + i, x + j]*templateli, j]

image[x+ template height//2, y + template width//2] = acc X X+'i.

y+] o [
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Correlation for BINARY target matching

I w

v, original image

IQRHM DIF1 Detl HFA1
l'] - E ll]1 I'] . 1 1'.5 HI] E _ ﬂﬂﬂ template

B.794 B.142 HO 2.8088 ® —
A.765 a.489 MO 6 . 888 -

Easy to understand with binary images

Target used as a filter
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IQRHA DIF Det #HFn1
B.2081 B.145 HD 2 .068
B.794 B.142 HO 2 _000 X

H.765 0487 MO 6 . 888
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HOIQRM1 DIF Det #Fn1
MO .2 81 B.145 HO 2 .08880
HOA . 794 B.142 NO 2 ._0060 X

H.765 0487 MO 6 . 888
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I0RMT DIF

.20 B.145
B.794 B.142

H.765 0487

Det

MO
HO

MO

- - e

HFA

2. 888
2.088

6 . 888

TRY

1111

®@
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I0RMT DIF Det HFA

.20 B.145 MO 2. 888
B.794 B.142 HO 2.088

H.765 0487 MO 6 . 888

The maximum
is here

1111

- - e
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However...

IORM
.21
B.794
B.765

vy, original image

DIF1 Det #F A

A.145 HO 2088
a.142 MO 2.0804
a.489 HO 6. 888

template

HO
HO
HO

correlation

Each point in a white area is
as big as the template
achieve the maxium value
(togheter with the perfect
match)
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However...

TORM
g_201
B.794
B.765

v, original image

DIF1 Det

A.145 HO
a.142 HO
a.489 HO

Normalization is needed when using
correlation for template matching!

#F A
20848
2 .8084
6. 888

X%

template

HO
HO
HO

Each point in a white area is
as big as the template
achieve the maxium value
(togheter with the perfect

match)
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Normalized (Zero) Cross Correlation

A very straightforward approach to template matching

Normalized Cross Correlation NCC(A,B) € [—1,1] is defined as
N(4, B)

JN(A,A)N(B, B)

NCC(A,B) =

where

N(A, B) = j f (A(x,y) — A)(B(x,y) — B) dx dy
|14

and A represents the average image value on patch A, similarly B. W is
the support of A or B.
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|
|

Normalized (Zero) Cross Correlation Y BB

A = region.flatten()
mean_A = np.mean(B)
A=A - mean_A

cos 6
B = template.flatten()

mean_B = np.mean(B)

B =B - mean_B

correlation = np.dot(A,B) /np.sqrt( np.dot(A,A) * np.dot(B,B) )
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Do it yourself on Colab!

Image: “te.jpg” Template: “template.jpg”

Intense
English _Freu kfast
gl
Aremkfast Tea

_Ten b T N\ Find in the shared folder
and try to perform template
matching, using correlation.
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Do it yourself!

Image: “te.jpg” Template: “template.jpg”

Find in the shared folder
and try to perform template
matching, using correlation.
Does it work?

How can you resolve the
problem?

IACV, UEM Maputo, Boracchi



Normalized Cross Correlation
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Normalized Cross Correlation

Remarks:
* NCC yields a measure in the range [-1,1],
* NCC is invariant to changes in the average intensity.

» While this seems quite computationally demanding, there exists fast
implementations where local averages are computed by runging.sums. (ingegral

image) « A is the region in the image,
B is the filter
and they are comparable in size
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Integral Image

The integral image S is defined from an image I as follows

s@wy) = ) 10,0

r<y,c<X

| S

X

yI-
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Using the Integral Image

The integral image allows fast computation of the sum (average) of any
rectangular region in the image

z I(r,c) = 5(x3,¥,) — S(x2,¥1) — S(x1,¥2) + S(x1,¥1)

yleryZI
X1SC=Xop
X1 X9 X1 x2
! S5(xq 3’1)L 1S (x5, V1)
N4 3 PoTTTTTTTTT T TTT
5(x1»YZ)E 1 S(x2,y2)
Vop----mmmmmm oo Vo mmmm e
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Disparity Map Estimation

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Disparity Map Estimation

There are different measures to compare a patch in I; with all the candidate matches in I,

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale



http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

Disparity Map Estimation

There are different measures to compare a patch in I; with all the candidate matches in I,

U u+d

Il I .

N(4, B)

NCe(d,B) = JN(A, AN (B, B)

S ———

(U - o

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Stereo Pairs http://vision.middlebury.edu/stereo/data/



http://vision.middlebury.edu/stereo/data/

Stereo Pairs http://vision.middlebury.edu/stereo/data/
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Stereo Pairs http://vision.middlebury.edu/stereo/data/
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Convolution
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Correlation and Convolution

The correlation among a filter w and an image is defined as
L

L
(I Qw)(r,c) = 2 2 w(u,v) *I(r +u,c+ v)

u=—-Lv=-L

where the filter w is of size (2L + 1) X (2L + 1)

The convolution among a filter w and an image is defined as

L L
(I ®w)(r,c) = z z w(u,v) *I(r —u,c —v)

u=-—L v=-L

where the filter w is of size (2L + 1) X (2L + 1)

There is just a swap in the filter before computing correlation!
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Convolution - and filter flip

Let I, w be two discrete 2D signals of (2L + 1) X (2L + 1)

w w, | w,
W W9

vy
L L

IACV, UEM Maputo, Boracchi



Convolution - and filter flip

Let I, w be two discrete 2D signals of (2L + 1) X (2L + 1)

L

L
G(r,c) =U ®w)(r,c) = Z z I(r+u,c+ v)|w(—u, —D)

u=—Lv=-L

w W w w w W w
2 8 . 9 8
3 9 AY—]ﬁp
— W w
w = W, W, w, W, 6 5
Wg W, w w w, w, w w

In this particular case L = 1 and both the image and
the filter have size 3 X 3
The convolution is evaluated at (r,c) = (0,0)
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Convolution - and filter flip

Let I, h be two discrete 2D signals of (2L + 1) X (2L + 1)

G(r,c)=U®w)(r,c) = zL: zL:

u=-L v=-L
W W w . w W, .
i X - flip i Y - flip
w = W5 W6 W5 W6
A W, w W, w,
Point-wise | | ' | |
W w
° ° product ’ ’
we | w, N | I, —_—

w(—u, —v)
W, Wy
W W,
W, w, w,
Wol, | wgl, | Wl
Wel, | Wil | w,lg
Wol | Wolg | wylg

IACV, UEM Maputo, Boracchi



Convolution
Let I, w be two discrete 2D signals of (2L + 1) X (2L + 1)

L L
G(r,c) =U ®w)(r,c) F E I(r+u,c+v)w(—u,—v)
u=—-Lv=-L
w, [ w, | w X - flip wg | W, Y- flip W, Wy
w = W, W, W, 2 W &
We | W, W w, | ow w, w, W,
Point-wise | | | | | owt | owd
W W 1 5 ] 2
o | product : A ” Sum
W w, % Iy lg e ———— Wel, | Wl | wjlg | =—————>
W, w, W, |7 lg lg Wol | Wolg | wylg

G(r,c) =woly +wgl, +w,l; +w i, +welc +wel, +wsl, +w,lg +w,l,
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Convolution and filter flip

L L

L L
(I ®w)(r,c) = z Z w(u,v) *I(r —u,c — v) (I ®w)(rc)= z z [(r+u,c+v)w(—u,—v)

u=—Lv=-—L u=-Lv=-L

w(=1,0) | w(-1,1)

w(0,0) w(0,1)

Flipped image Flipped filter

w(1,1) w(1,0)

w(0,1) w(0,0)

w(1,0) | w(i1)

wHW(=1, —DIQDH - + w(1,0)I(~1,0) + - e+ W(1,0)I(—=1,0) + - Hw (-1, —DI(L, D+ -

Flipping the image and applying the filter = Applying the flipped filter

w(-1,1) | w(-1,0)
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Question

The filter (a.k.a. the kernel) yields the coefficients used to compute the

linear combination of the input to obtain the output

10

0.1

Image

Kernel

Filter Output

IACV, UEM Maputo, Boracchi



Let’s have a look at 1D
convolution



Let’s have a look at 1D Convolution

Let us consider a 1d signal y and a filter w. t

Their convolution is also a signal z = y Qw.
For continuous-domain 1D signals and filters ¢

2(0) = (v @w)(x) = f Y(OW(T — O)dt

R

that is equivalent to

2(2) = (y @W)(2) = fR Y@ — Ow(e)dt
T<0 T=0 >0

At each 7, the convolution is the weighted by the
funCtlon Shlfted by T IACV, UEM Maputo, Boracchi



Let’s have a ook at 1D Convolution

For discrete signals and filters

L
2) = (Y @W)() = ) y(n - m)w(m)

m=-—L

where the filter has (2L + 1) samples

e E

o Lo o Lo Lo bbb
Product
o

Sum
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Let’s have a ook at 1D Convolution

For discrete signals and filters

L
2) = (Y @W)() = ) y(n - m)w(m)

m=-—L

where the filter has (2L + 1) samples

e E
g e
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Let’s have a ook at 1D Convolution

For discrete signals and filters

L
2) = (Y @W)() = ) y(n - m)w(m)

m=-—L

where the filter has (2L + 1) samples

e E
IR0 EMEE Y RN

e

... IACV, UEM Maputo, Boracchi



Let’s have a ook at 1D Convolution

For discrete signals and filters

L
2) = (Y@W)() = ) y(n = mw(m)

m=-—L

where the filter has (2L + 1) samples

e E
mmug e

.... IACV, UEM Maputo, Boracchi




Let’s have a ook at 1D Convolution

For discrete signals and filters

L
2) = (Y@W)() = ) y(n = mw(m)

m=-—L

where the filter has (2L + 1) samples

e E
EE0 R N D

o

..... IACV, UEM Maputo, Boracchi



1D Convolution - example

2(n) = (Y@W)(n) = z y(n — m)w(m)

1 1 1 11
y =sin(x),w=|=-,=,=,=,= L=2

A 5'5°5’5"5)"

[E’ 5 5 5 5]

A

/ A ~--0.91
i y 084 |
B ) P ~ - ™. ‘0\.60 |
. p48 ]
e T \'\p.\14 1
u. - \\L)\:35 10.2
: N “L0.76 ___,/"'?O/.71 :

Lo~ PP 2 ¢ O/R Maputo, Boracchi




1D Convolution - example

2(n) = (Y@W)(n) = z y(n — m)w(m)

11111

y=sin(x),w=[ ————— L =2

5'5'5'5°5]"

0.766 . O48+1 084+1 1+1 O91+1 0.60
~ — % — % — % — % — %
' 5 5 5 5 5

084
-~ _ 065

00— '
077/@’91/ ---original Y|/
P —970 - * convolved |

2058 1058 -
\\"‘0 _~7~'6 o Q75 - 4"‘074 -7 ~0.71 N

| ~lnao -+ QR
T | A4S T 7 . J1 7

Maputo, Boracchi



1D Convolution - example
L
2(n) = Y@W)(m) = ) y(n—mw(m)
m=-—L

L
= 2 y(n + m)w(—m)
m=-—L

08 - | 84 ,f‘(;:;;:;_ 091 ---original |

oL /:”/%65’ “'ONZQ\"‘---\.._‘_ 60 * convolved| |

s f«a _

026 S i

The minus in the formula above \T@{Af
indicates a flip. Flipping the filter h L{} il
or the signal y is the same. \- §§ 419:8%
Here there is no point of flipping h 2058 4058
sincelit is symmetrilc W.L.L. its center |076W?Z§222 S Maputo, Boracchi




What about an imupulse?

~~-noisy i
* convolved| |

0.8 — P e

06—

02 -~
s

0¥

D2— N

06— AN il n

08— > « |
- .

’
I
I
1
(X |
o e e

1 Maputo, Boracchi



What about an imupulse?

~~-noisy
* convolved| |

1 Maputo, Boracchi



What about noise’

| » o
A "
/ gl-o®
1 ""‘f"'\r \.'..;
;z--;l’ L 3 |
- \
/" »
. ¥
A
0.5 — ,__.'/
/./'.:
2
A
‘./
L &
0l—
05—
A
|

~ = noisy
* convolved

Maputo, Boracchi



What about noise’

L b
A \.%}_{.‘\_\‘/}.{ 4;( —

i : Maputo, Boracchi



Let’s go back to
2D convolution now



A well-known Test Image - Lena
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A Trivial example st AN
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Linear Filtering

1 1 1
*l 1 1 1 _ ()
7 o
1 1 1

IACV, UEM Maputo, Boracchi



The original Lena image
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Filtered Lena Image

IACV, UEM Maputo, Boracchi



0041
0034
1

00144
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The original Lena image




The filtered Lena image




What about normalization?
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..what about




.. convolution is linear




..what about




.. convolution is linear




2D Gaussian Filter

Continuous Function

H, (x,y)=—

Discrete kernel: assuming G is a 2k + 1) x (2k + 1) filter

) .0
TlazeXp A 22 )

G(i, j)=

=

That is then normalized such that ¥~ _, ¥%__, G(,j) =1

g
o

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.01

0.01

0.01

0.01

0.0

0.0

0.0

g
5;’*’*::“:
r"t"‘*‘ i A

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.01 0.01 0.01 0.01 0.0

0.01 0.01 0.02 0.02 0.01 0.01

0.01 0.01 0.02 0.02 0.01 0.01

0.0 0.01 0.01 0.01 0.01 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

0.0

0.01

0.01

0.01

0.01

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0



2D Gaussian Filter

sigma =

gaussian = cvZ.getGaussianKernel(filter_size, sigma)
filter_gaussian = np.outer(gaussian, gaussian)




Weighted local averaging filters: Gaussian Filter

0.2\

0.154.~

0.14.~

0.054.-




Weighted local averaging filters: Gaussian Filter

W
s :
b 4
I 1




Convolution Properties



Properties of Convolution: Linearity

It is a linear operator
(AL + uly) ® w)(r,c) = 2I; ® w)(r,¢) + u(l, ® w)(r,¢)
where A, u € R

Obviously, when the filter is center-symmetric, convolution and correlation
are equivalent

IACV, UEM Maputo, Boracchi



Properties of Convolution (and Padding)

It is commutative (in principle)

L®L=L®L
However, in discrete signals it depends on the padding criteria In continuous domain
it holds as well as on periodic signals

Filter must be centered in
o the colored region to
remain inside the image

Original image is in white, light blue
values are padded to zero to enable
convolution at image boundaries

IACV, UEM Maputo, Boracchi




Is Convolution Commutative’

IACV, UEM Maputo, Boracchi



Is Convolution Commutative’
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Translation




Translation

Remember the filter has to be flipped before convolution




Is Convolution Commutative’

filter

This holds for the «full

convolution» modality, not
the «same» or «valid»

IACV, UEM Maputo, Boracchi



Properties of Convolution: Associative

It is also associative
fOEWOW=(F®gOw=Ff®gOw
and dissociative

fOUrtwW=f®g+fOwW
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Properties of Convolution: Shift invariance

It is also associative
fOEWOW=(F®gOw=Ff®gOw
and dissociative

fOUrtwW=f®g+fOwW

It is shift-invariant, namely

(I(- =19, —co) ®W)(r,c) = ®wW)([T — 19, ¢ — Cp)

Any linear and shift invariant system can be written as a convolution

IACV, UEM Maputo, Boracchi



A bit of theory behind
convolution

Giacomo Boracchi
giacomo.boracchi@polimi.it

Image Analysis and Computer Vision
UEM, Maputo
https://boracchi.faculty.polimi.it
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Systems

Consider a system H as a black box that processes an input signal (f)

and gives the output (i.e, H[f])

flt)—

H

/

The input is a signal

—(H f)(1)
AN

The output is a

signal

IACV, UEM Maputo, Boracchi



Systems

Consider a system H as a black box that processes an input signal (f)
and gives the output (i.e, H[f])

fi)»— | H | —CH f)(1)

In our case, f is a digital image (a 2D matrix), but in principle could be
any (analogic or digital) n-dimensional signal

IACV, UEM Maputo, Boracchi



Linearity and Time Invariance

A system is linear if and only if
HIAf(®) +ug@)] = AH[f] () + uH[g] (£)

holds for any A, u € R and for f, g arbitrary signals (this is the canonical
definition of linearity for an operator)

A system is time (or shift) - invariant if and only if
H[f(t —ty)] = H[f] (t — tp)

holds for any t, € R and for any signal f

IACV, UEM Maputo, Boracchi



Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent
convolutional operator

* LTI systems are characterized entirely by a single function, the filter

IACV, UEM Maputo, Boracchi



Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent

convolutional operator

* LTI systems are characterized entirely by a single function, the filter

 The filter is also called system's the impulse response or point
spread function, as it corresponds to the output of an impulse fed to

the system

—)

H

—)
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The Impulse Response

Take as input image a discrete Dirac

original kmﬂ

g/
x 10

&0
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30 an
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10
a0

This is why h is also called the “Point Spread Function”

observation
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Denoising

An application scenario for digital filters

IACV, UEM Maputo, Boracchi



Low - Pass

0=0.05

no
smoothing The effects of smoothing

Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of

=1 pixel a1 1Mage of gaussian noise.

a=2 pixels
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Denoising: The Issue

A Detail in
Camera Raw
Image
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Denoising: The Issue

Denoised
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Denoising: The Issue

A Detail in Camera
Raw Image

IACV, UEM Maputo, Boracchi



Denoising: The Issue

Denoised
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Image Formation Model

Observation model is

z(x) =yx)+n(x), x€eX
Where
« x denotes the pixel coordinates in the domain X < Z?
vy is the original (noise-free and unknown) image
e z is the noisy observation

* 7 is the noise realization

IACV, UEM Maputo, Boracchi



Image Formation Model

Observation model is
z(x) = y(x) + n(x), x €X

The goal is to compute y realistic estimate of y, given z and the
distribution of n.

For the sake of simplicity we assume AWG: n ~ N(0,0%) and n(x)
independent realizations.

The noise standard deviation o is also assumed as known.

IACV, UEM Maputo, Boracchi



Convolution and Regression

Observation model is

2(z) =y(r) +n(z) zeX

Consider a regression problem

IACV, UEM Maputo, Boracchi



Fitting and Convolution

The convolution provides the BLUE (Best Linear Unbiased Estimator) for
regression when the image y is constant

The problem: estimating the constant C that minimizes a weighted loss
over noisy observations

Yn(xzo) = argrélin Z wp (2o — xs) (2(xs) — C’)2

r,€EX

wnr = 3 W w
Where h = { h Z h
xeX

This problem can e solved by computing the convolution of the image z
against a filter whose coefficients are the error weights

y(zo) = (2 ® wn) (20)

IACV, UEM Maputo, Boracchi



Image Formation Model

Observation model is
2(z) =y(z) +n(r) ze€X

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a
parametric expression of ¥ on X

IACV, UEM Maputo, Boracchi



Image Formation Model

Observation model is
2(z) =y(z) +n(r) ze€X

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a
parametric expression of ¥ on X
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Local Smoothing

Additive Gaussian
White Noise

n=N(u,o)

e%

[

After Gaussian Smoothing

IACV, UEM Maputo, Boracchi



Denoising Approaches

Parametric Approaches

« Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

IACV, UEM Maputo, Boracchi



Denoising Approaches

Parametric Approaches

« Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Parametric Approaches
* Local Smoothing / Local Approximation
e Non Local Methods

IACV, UEM Maputo, Boracchi



Denoising Approaches

Parametric Approaches

« Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Parametric Approaches

* Local Smoothing / Local Approximation
* Non Local Methods

Estimating y(x) from z(x) can be statistically treated as regression of z given x
y(x) = E|z | x]
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Denoising Approaches

Parametric Approaches

« Transform Domain Filtering, they assume the noisy-free signal is somehow
sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary
based decomposition)

Non Parametric Approaches

* Local Smoothing / Local Approximation
* Non Local Methods

Estimating y(x) from z(x) can be statistically treated as regression of z given x
y(x) = Elz | x]
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Denoising Approaches

Spatially adaptive methods, The basic principle:

* there are no simple models able to describe the whole image y, thus
perform the regression y(x) = E|z | x]

* Adopt a simple model in small image regions. For instance
Vx € X, 30, s.t. Y|, 1s a polynomial

* Define, in each image pixel, the “best neighborhood” where a simple
parametric model can be enforced to perform regression.

* For instance, assume that on a suitable pixel-dependent neighborhood,
where the image can be described by a polynomial

IACV, UEM Maputo, Boracchi



ldeal neighborhood - an illustrative example

ldeal in the sense that it defines the support of a pointwise Least Square
Estimator of the reference point.

{ I /| | { '- i' )

/ _.-'/ A ! h ! '!'
\\ ____f 4 N\ i ) . |

Typically, even in simple images, every point has its own different ideal
neighborhood.

For practical reasons, the ideal neighborhood is assumed starshaped

Further details at LASIP c/o Tampere University of Technology
http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/ ~lasip/
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Neighborhood discretization

A suitable discretization of this neighborhood is obtained by using a set of
directional LPA kernels {gg n}, ,

g

Ideal Directional Discrete Adaptive
Neighborhood kernels Neighborhood

where 6 determines the orientation of the kernel support, and h controls
the scale of kernel support.

http://www.cs.tut.fi/ ~lasip/
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ldeal neighborhood - an illustrative example

Ideal in the sense that the neighborhood defines the support of pointwise Least Square Estimator of the reference point.

http://www.cs.tut.fi/ ~lasip/
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Examples of Adaptively Selected Neighorhoods

Define, Vx € X , the “ideal” neighborhood U,

Compute the denoised estimate at x by “using” only pixels in U, and a
polynomial model to perofrm regression 9(x) = E[z |x, U, ]

Ny

http://www.cs.tut.fi/ ~lasip/
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Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule

-?i'__ i O A P
2 et T narthh g R S

http://www.cs.tut.fi/ ~lasip/
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Example of Performance

Original, noisy, denoised using polynomial regression on adaptively
defined neighborhoods (LPA-ICI)

http://www.cs.tut.fi/ ~lasip/
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Blur & Noise In Image Formation

IACV, UEM Maputo, Boracchi



Noise

The acquired image is different from the original scene because of sensor
limitations

The CCD sensors and the whole acquisition pipeline are affected by
different sources of noise:

* Thermal noise
 (Quantization noise
e Dark current noise

* Photon-counting noise

And other aberrations such as dark fixed-pattern noise, light fixed-pattern
noise,...

IACV, UEM Maputo, Boracchi



In the most simple settings

Observation model is
z(x) = y(x) + n(x), x €X

Where

* x denotes the pixel coordinates in the
domain X c Z?

» y is the original (noise-free and unknown)
Image

e z is the noisy observation

* 7 is the noise realization




Additive Gaussian White Noise (AWGN)

Additive White Gaussian Noise is a
frequently encountered assumption

White Gaussian noise is a very practical
approximation not to account for each
noise source.

However, this is a very coarse
approximation, since we all have
experienced that dark regions are
typically more be noisy than correctly
exposed ones.




Signal Dependent Noise Model

Photon counting, like other counting processes, are modelled by a Poisson
distribution.

Image formation model becomes:
z(x) = u(x) + n(x), x €X
Where
u(x) ~ P(1-y))

P denotes the Poisson distribution, A > 0 is the quantum efficiency of
the sensor.

e 1~ N(0,0%) is the Gaussian noise term due to thermal and
guantization noise

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012



Signal Dependent Noise Term

The term u includes the signal-dependent noise
u(x) ~ P(4-y(x))

Remarks from Poisson distribution

* Elut))]=21-yk)

e var[u(x)] =A4-y(x) -> The noise variance depends on the amount of
light reaching the sensor

. SNR(u(x)) _ EluCol” ]—/1 y(x)

var|u(x)

The noise variance is higher in brighter regions, but the signal to noise is
lower here!

IACV, UEM Maputo, Boracchi



ere is an Example of Noisy Picture

Here the variance is large, but
denoising is relatively simple
since the SNR is high

=

Here the variance is low, and the
same for the SNR. Dark regions are the
most challenging location for

G. Boracchi, A. Foi Multiframe Raw-Data Denoising Based On Block-Matching And 3-D Filtering For Low-Light Imaging And Stabilization, LNLA 2008



Signal Dependent Noise

Poisson and Gaussian noise component can be conveniently approximated as:
z(x) = y(x) + a(y(x))n(x), x €X
Where

o is a function defining the noise variance of the overall noise component that

depends on the true image intensity y. A good model % = ay(x) + b, where the
parameters a, b depend on the camera

« 1~ N(0,1) is white noise

Foi A, Trimeche M, Katkovnik V, Egiazarian K. Practical Poissonian-Gaussian noise modeling and fitting for single image raw-data. IEEE Trans Image Process. 2008



Signal Dependent Noise

Poisson and Gaussian noise component can be conveniently approximated as:

It is apparent that signal-dependent noise model needs to be taken into
Whe account in denoising algorithms.... Therefore you need special algorithms for
signal-dependent noise
i (
"It is possible to estimate Variance Stabilizing Transforms (VST), which perform
| an intensity mapping to change the signal to have (approximately) unitary
« jvariance disregarding the light intensity.

In practice, it is better to perform VST + denoising for AWGN, rather than design
denoising algorithms that are specific for signal-dependent noise

Foi A, Trimeche M, Katkovnik V, Egiazarian K. Practical Poissonian-Gaussian noise modeling and fitting for single image raw-data. IEEE Trans Image Process. 2008



Signal and Time Dependent Noise

The exposure time heavily impact on noise, since the noise variance
ultimately depends on the amount of light reaching the sensor.

This can be conveniently approximated as:
zr(x) = ur(x) + n(x), x €X
Where

T
ur(x) ~ P (A] y(x — S(t))dt)
0

And P denotes the Poisson distribution, A is the quantum efficiency and
s(-) is the trajectory of the sensor due to motion.

Motion results in Motion Blur

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012



Point Spread Function

The Point Spread Function (we will see
later the reason of this name) can be
obtained by discretizing the camera
trajectory s(-) into an image

This term is responsible of the blur in
the image

T
f y(x — S(t))dt
0

An example of PSF trajectory generated from a random motion and the
corresponding sampled PSF. This trajectory presents an impulsive
variation of the velocity vector, thus mimicking the situation where the
user presses the button or tries to compensate the camera shake

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012
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Exposure time 0.8”
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The Blur-Noise Trade-Off
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Nonlinear Filters
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Nonlinear Filters

Non Linear Filters are such that the relation
HAf(®) +ug®]=2H[f] @) +uH[g] ()
does not hold, at least for some value of A, u, f, g or point t.
Examples of nonlinear filter are
« Median Filter (Weighted Median)
* Ordered Statistics based Filters
* Threshold, Shrinkage

There are many others, such as data adaptive filtering procedures (e.g
LPA-ICI)

IACV, UEM Maputo, Boracchi



Blockwise Median

Block-wise median: replaces each pixel with the median of its
neighborhood. It is still a local spatial transformation!

This is edge-preserving and robust to outliers!

med

10

m = median(1,3,0,2,10,2,4,1,1) =2

Maputo, Boracchi



Salt-and-pepper noise

Salt and Pepper (Impulsive) noise



Denoisng using local smoothing 3x3




Denoisng with median 3x3

Il P

Salt and Pepper (Impulsive) noise



Morphological Operations

Ordered Statitiscs and Blob Labeling



Binary images

A binary image is defined as I € {0,1}%*¢
Each pixel can be either true (1) / false (o)

Typically binary images are the result of pre-
processing operations including thresholding




An overview on morphological operations

Erosion, Dilation
Open, Closure

We assume the image being processed is binary, as these operators are
typically meant for refining “mask” images.

IACV, UEM Maputo, Boracchi



Boolean operations on binary images I € {0,1}¢*¢

True 1/ false 0
A NOT(A)

L

NOT_ A=A==0



UNION of binary images

Equivalent to the OR operation
A B AUB

AUB =A+ B >0



INTERSECTION of binary images

Equivalent to the AND operation
A B ANB

ANB =A+B >1



On binary images it is possible to define XOR

A B XOR(A,B)

y

XOR(AB)=AUB — ANB



What do we use this for/

IACV, UEM Maputo, Boracchi



Intersection over the Union (loU, Jaccard Index)
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By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718561



Intersection over the Union (loU, Jaccard Index)

Area of Overlap
loU =

Area of Union

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718560



Intersection over the Union (loU, Jaccard Index)

loU: 0.4034 loU: 0.7330 loU: 0.9264

L

Poor Good Excellent

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718559



Jaccard Index (loU)

It is a statistical measure of similarity between two sets, being in case of
images the coordinates of the pixels set to true

A B)_|AnB|
J(4, - |AUB|

It ranges between [0,1] being J(4,B) = 0 when A and B are disjoint, and
J(4,B) = 1, when the two sets coincides.

It is a standard reference measure for detection performance

IACV, UEM Maputo, Boracchi



Jaccard Index (loU)

It is not necessarily defined for bounding boxes (even though most of
deep learnmg networks for detections prowde bb as outputs)

e o

Credits Barozzi — Guidi IACV project 2017



Jaccard Index (loU)
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Jaccard Index (loU)
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Jaccard Index (loU)

A B

Ground Truth
(annotated region)

Detection Output

IACV, UEM Maputo, Boracchi



Jaccard Index (loU)

AN B
|A U B]
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Filters on binary images

It is possible to define filtering operations between binary images
Consider also binary filters, i.e. spatial filters having binary weights.

In the context of object detection, these can be used to refine the
detection boundaries

IACV, UEM Maputo, Boracchi



Erosion

General definition:
Nonlinear Filtering procedure that replaces each pixel value, with the
minimum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff the image in the neighbor is constantly 1

This operation reduces thus the boundaries of binary images

It can be interpreted as an AND operation of the image and the neighbour
overlapped at each pixel

IACV, UEM Maputo, Boracchi



Erosion

A U ERODE(A, U)




Erosion

A U ERODE(A, U)

The gray area corresponds
to the input



Erosion

Erosion removes half size of the structuring element used as filter




Erosion

A U ERODE(A, U)




Erosion

A U ERODE(A, U)




Dilation

General definition:
Nonlinear Filtering procedure that replaces to each pixel value, with the

maximum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff at least a pixel in the neighbor is 1

This operation grows fat the boundaries of binary images

It can be interpreted as an OR operation of the image and the neighbour

overlapped at each pixel
IACV, UEM Maputo, Boracchi



Dilation

A U DILATE(A, U)




Dilation

A U DILATE(A, U)

The brighter area now
corresponds to the input



Dilation

Dilation expands half size of the structuring element used as filter




Dilation

A U DILATE(A, U)




Dilation

A U DILATE(A, U)




Open and Closure

Open Erosion followed by a Dilation

Closure Dilation followed by an Erosion

IACV, UEM Maputo, Boracchi



Open

Open Erosion followed by a Dilation
* Smooths the contours of an object
e Typically eliminates thin protrusions

IACV, UEM Maputo, Boracchi



Open

= ERODE(A, U) 0 = DILATE(O, U)

Gl Gl C2




Open

= ERODE(A, U) 0 = DILATE(O, U)

Gl Gl C2




Open

= ERODE(A, U) 0 = DILATE(O, U)

Gl G G2

The gray area corresponds
to the input




Closure

Closure Dilation followed by an Erosion
* Smooths the contours of an object, typically creates bridges
* Generally fuses narrow breaks

IACV, UEM Maputo, Boracchi



Close

0 = DILATE(A, U) = ERODE(O, U)

2 faja




Close

0 = DILATE(A, U) = ERODE(O, U)

2 aja

The gray spot was «false»
in the input




There are several other Non Linear Filters

Ordered Statistic based
* Median Filter
« Weight Ordered Statistic Filter (being erosion and dilation special cases)
e Trimmed Mean
* Hybrid Median

Ordered statistics filters (including erosion and dilation) can be applied to
grayscale images as well, as their definition is general

In Python: skimage .morphology

IACV, UEM Maputo, Boracchi



Digital Image Filters:
Derivatives and Edges
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Derivatives Estimation



Differentiation and convolution

Recall the definition of derivative

af(xo) .
= lim
0x e—0

(f(xO +e) — f(%))

€

Now this is linear and shift invariant.

Therefore, in discrete domain, it will be
represented as a convolution



Differentiation and convolution

Recall the definition of derivative We could approximate this as
0f (o) _ . (fGo+E) = (o)) 0f () _ fCnrr) = f &)
dx €—0 € dx Ax

Now this is linear and shift invariant. which is obviously a convolution

Therefore, in discrete domain, it will be ~ 28ainst the Kernel [1 -1}

represented as a convolution



Finite Differences in 2D (discrete) domain

of (x,y) _ hm( flx+e,5)-f(x, y)]

ox -0 g Horizontal
of (x,y) _ hm(f (ry+e)-f (x,y)j -]
@y £—0 &
af(xn: ym) N f(xn+1' ym) - f(xn: ym) Vertical
d0x - Ax |
af(xn: Ym) . f(xn» Ym+1) _ f(xn: Ym) |:_ 1:|
ay Ay

Discrete Approximation Convolution Kernels



Think of an image as a 2d, real-valued function
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A 1D Example

Take a line on a grayscale image

—

IACV, UEM Maputo, Boracchi



A 1D Example ()

Filter the image values by a convolution against the filter [1 -1]
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Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition



Derivatives

Derivatives are used to highlight intensity discontinuities in an image and
to deemphasize regions with slowly varying intensity levels
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Differentiating Filters

The derivatives can be also computed using centered filters:

L) =flx—1) = f(x+1)

Such that the horizontal derivative is:

=1 ®
While the vertical derivative is:
=1 &

1

O -

IACV, UEM Maputo, Boracchi



Classical Operators: Prewitt

Horizontal derivative

1 1] 1 0 —1]

s = |11 dx = I 1] hy=s®dx=1]1 0 -1

b1 10 -1
Smooth Differentiate

Vertical derivative ) )

| 11 1

5:111 dyz{ } hy=S®dy=0 0 O

bl -l -1 -1 -1
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Classical Operators: Sobel

Horizontal derivative

.
s =12 2 dx = I 1]
_1 1_

Smooth Differentiate

Vertical derivative

=[3 ] e[l
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Another famous test image - cameraman




Horizontal Derivatives using Sobel

Vi, = I® dx)

VL. (r,c)
71600 = {71,




Vertical Derivatives using Sobel

Vi, = (1 ® dy)
dy,=d,'

VL. (r,c)
7100 = {71,




Gradient Magnitude

V1| = \/(1 ®d)?+(® dy)z

VL. (r,c)
VIi(r,c) = [\7 L, (r,c)




The Gradient Orientation

Like for continuous function, the gradient in each pixel points at the
steepest growth/decrease direction.

- Viy(r,c)\ e dy)(r, ‘)
4VI(r,c) = atand (le (r, c)) - atand ((1 ® dy) (7, C))

The gradient norm indicates the strength of the intensity variation

Let’s switch to Matlab.....

IACV, UEM Maputo, Boracchi



Think of an image as a 2d, real-valued function
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The Image Gradient

Image Gradient is the gradient of a real-valued 2D function

1 ®d,
VI(r,c) = 7 g dy] (r,c)

where principal derivatives are computed through convolution against the
derivative filters (e.g. Prewitt)

1 0 -1
dx= 11 0 -1], dy = dx’
1 0 -1

Image gradient behaves like the gradient of a function:
|VI(r,c)| is large where there are large variations
2VI(r,c) is the direction of the steepest variation

IACV, UEM Maputo, Boracchi



Think of an image as a 2d, real-valued function
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Think of an image as a 2d, real-valued function

140

160
180 200

What about the gradient in this neighborhood?




Think of an image as a 2d, real-valued function
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Think of an image as a 2d, real-valued function
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Higher Order Derivatives



Derivatives

Derivatives are used to highlight intensity discontinuities in an image and
to deemphasize regions with slowly varying intensity levels

z Isolated point P
= solated poin '
E 6 ?.-t‘”_ . P r|
. 5 e--e X J
_ - L !
v, . Ramp L ST Step !
> :1 e o Thin lme_\ X:
-3 . * »
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: [ i 5 I
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—
[ ]
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-
&
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|
L ]
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\'1
[

U \'—-r-—-r > -8 |
Image strip | S [5|4 |3 |2[1|0]0[0o{6lo|0[0|0[1[3][1][0[0[0[0|7|7[7|7|«]"
T e e A A
First Derivative —1—1-1—-1-10 0 6 =60 0 0|1 2-=2-1/0 0 0 7 0 0 0
R IR A I .
Second Derivative o 0 0|1 0l 6126 0 0 1|1 —41 10 0[7=7¢ 0 0O
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Second Order Derivatives

The Laplacian of the second order derivative is defined as

2] _ 0°1 . 0°1
0x* 0dy?
where
921
Freie Ix+1,y)+1(x—1,y) — 2I(x,y)
g—; =I(x,y—1)+1(x,y +1) — 2I(x,y), thus

Vel=I1(x+1L,y)+I1(x—1,y)+I1(x,y—1)+I1(x,y+1) —4l(x,y)
It’s a linear operator -> it can be implemented as a convolution

TODO: prove that the second order derivatve is like this

IACV, UEM Maputo, Boracchi



Filter for Digital Laplacian

The Laplacian of the second order derivative is defined as

O/1]|0

1 (-4 1

O/1]0
Standard

definition, inviariant
to 90° rotation

041

V2] = — +-—

0x2

021

dy?
11| 1
1 (-8 1
1111
Alternative

definition, inviariant
to 45° rotation




The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other
discontinuities, all superimposed on a dark, featureless background.




The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other
discontinuities, all superimposed on a dark, featureless background.
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The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian
image to the original (provided suitable rescaling)

G(r,c) =1(r,c) + k[Vz{(r, )]




The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian
image to the original (provided suitable rescaling)

_G(r,c)=1(r,c) + k[VZI(r,c)]




Edges in Images



Edge Detection in Images

Goal: Automatically find the contour of objects in a scene.

What For: Edges are significant for scene understanding, enhancement

compression...

Edge image

Typically the edge

= . % | mask is «flipped», 1

" at edges and 0
- E|53WhﬁF8/, UEM Maputo, Boracchi



Edges in Images

Depth
discontinuities

IACV, UEM Maputo, Boracchi



Edges in Images

Shadows

IACV, UEM Maputo, Boracchi



Edges in Images

Discontinuities in
the surface color,
Color changes

IACV, UEM Maputo, Boracchi



Edges in Images

Discontinuities in
the surface
normal

IACV, UEM Maputo, Boracchi



What is an Edge

Lets define an edge to be a discontinuity in image intensity function.

Several Models

e Step Edge ’

* Ramp Edge f
* Roof Edge
* Spike Edge

They can be
thus detected as /\ H
discontinuities

of image
Derivatives

IACV, UEM Maputo, Boracchi



Edge Detection



Gradient Magnitude and edge detectors

Gradient Magnitute is not a binary image

We can see edges but we cannot identify
them, yet

VI = \/(l ®dy)?+ (I ® dy)z

IACV, UEM Maputo, Boracchi



Detecting Edges in Image

Sobel Edge Detector

Discrete Derivatives Gradient Norms Threshold
) 1] d
1 O 1 4,
2 0 —2|~_dx

P I T
» Threshold ——

\ 1 2 1] /
0O 0 O any alternative ?

Image 1

IACV, UEM Maputo, Boracchi



Canny Edge Detector Criteria

Good Detection: The optimal detector must minimize the probability of false
positives as well as false negatives.

Good Localization: The edges detected must be as close as possible to the true
edges.

Single Response Constraint: The detector must return one point only for each
edge point. similar to good detection but requires an ad-hoc formulation to
get rid of multiple responses to a single edge

True Edge Poor singnal-to-noise ratio Poor localization  Too many responses




Canny Edge Detector

It is characterized by 3 important steps
« Convolution with smoothing Gaussian filter before computing image derivatives
 Non-maximum Suppression
 Hysteresis Thresholding

J. Canny “A Computational Approach to Edge Detection” IEEE PAMI vol 8, no. 6, Nov. 1986 http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf



http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf

Canny Edge Detector

Smooth by Gaussian (smoothing regulated by o)

— X G —_ 20
S GG 1 o \/Eﬁe

Compute x and y derivatives
AS =
{8}6

}[S 5]

Compute gradient magnitude and orientation
S
2 2 -1
AS| = \[S2+ 5 0=tan” -

X

IACV, UEM Maputo, Boracchi



Canny Edge Operator (derivatives)

AS =A(G,*I)=AG_*1

T
oG GGG}

AG_ =
{ Ox oy

T
AS 6Ga*] 8GG*I
Ox oy




Convolution is associative

I®(g®dx)

X - derivative
2D-Gausslian



Gaussian Derivative Filters

The amount of smoothing is regulated by a parameter o

x-direction y-direction



Canny Edge Detector




Canny Edge Detector
AS| =82+

Gradient Magnitude

‘AS ‘ > Threshold = 25

Thresholded Gradient
Magnitude




Non-Maximum Suppression: The ldea

We wish to determine the points along the curve where the gradient
magnitude is largest.

Non-maximum suppression: we look for a maximum along a slice
orthogonal to the curve. These points form a 1D signal.

L/

Original Image Gradient Magnitude Segment orthogonal
(after thresholding)

IACV, UEM Maputo, Boracchi



Non-Maximum Suppression

0a

0.8

0.7

0.6

a4

0.3

a2

a1

=
i 1I"-
I.Il .II
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Non-Maximum Suppression: The ldea

There are two issues:
i. which slice to select to extract the maximum?
ii. once an edge pixel has been found, which pixel to test next/

L/

Original Image Gradient Magnitude Segment orthogonal
(after thresholding)

IACV, UEM Maputo, Boracchi



Non-Maximum Suppression - Idea (I1)

I

osl

o5l

07k

05l

05

ol

0al

azl

—" / \

'y 5_{ 5 @™ e 3\ =
In each pixel, the gradient indicates the direction The intensity profile along the segment.
of the steepest variation: thus, the gradient is We can easily identify the location of the

orthogonal to the edge direction (no variation maximum.
along the edge). We have to consider pixels on a
segment following the gradient direction




Non-Maximum Suppression - Threshold

Suppress the pixels in ‘Gradient Magnitude Image’ which are not local
maximum

"‘AS ) if [AS|(x, y) > |AS|(x",»")
M(x,y) =180 g As|(x, p) > AS] (7, )
0 otherwise

(x',y’) and (x”,y") are the
neighbors of (x,y) in |AS|

".¥")  These have to be taken on a line

along the gradient direction in (x,y)

IACV, UEM Maputo, Boracchi



Non-Maximum Suppression: Quantize Gradient Directions

In practice the gradient directions are quantized according to 4 main
directions, each covering 45° (orientation is not considered)

* Thus, only diagonal, horizontal, vertical line segments are considered

We consider 4 quantized directions o,1,2, 3 2
3 t 1

0/. 1(xo)
0(xp) = atan a/ay X

/55 1(%0)

Orientation is irrelevant since this is meant for segment extraction

IACV, UEM Maputo, Boracchi



Tracking the edge direction

The direction orthogonal to the gradient
follows the edge

Once a local maxima is found, we consider
the direction orthogonal to the gradient in
that pixel,

The direction is quantized as for extracting
the 1D segment for nonmaximum
suppression

We move one step in the quantized direction
to determine another point where to extract
1D segments

IACV, UEM Maputo, Boracchi



Tracking the edge direction

The direction orthogonal to the gradient
follows the edge

Once a local maxima is found, we consider
the direction orthogonal to the gradient in
that pixel,

The direction is quantized as for extracting
the 1D segment for nonmaximum
suppression

We move one step in the quantized direction
to determine another point where to extract
1D segments

IACV, UEM Maputo, Boracchi



Non-Maximum Suppression
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Hysteresis Thresholding

Use of two different threshold High and Low for
e For new edge starting point
e For continuing edges

Y

Gradient \ J High
M -

magnitude

low

-

=
In such a way the edges continuity is preserved

IACV, UEM Maputo, Boracchi



Hysteresis Thresholding

If the gradient at a pixel is above ‘High’ threshold,
e declare it an ‘edge pixel’.

If the gradient at a pixel is below ‘Low’ threshold
e declare it a ‘non-edge-pixel’.
If the gradient at a pixel is between ‘Low’ and ‘High’ thresholds

* then declare it an ‘edge pixel’ if and only if can be directly connected
to an ‘edge pixel” or connected via pixels between ‘Low’ and ‘ High’.

IACV, UEM Maputo, Boracchi



Hysteresis Thresholding

iﬁ’”ﬁﬂi P R
1 i@‘f{% It
g :*E_ ,hﬁzwl i

High =35 |
Low =15 |




Hysteresis Thresholding

M > Threshold =25




Hysteresis Thresholding

High =35
Low =15




Canny Edge Detection




Canny Edge Detection

Canny Edge Detection




Canny Edge Detection - changing hysteresis thresholds

Canny Edge Detection T: [0.1 0.2] S: 1.4142

Threshold: [Low, High], Sigma



Canny Edge Detection - changing hysteresis thresholds

Canny Edge Detection T: [0.005 0.2] S: 1.4142

Decreasing the low threshold extends the
length of existing edges

W

|I dlz‘ ! "'q:f:." ) -E;'\_
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Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.2] sigma: 1.4142

Reference thresholds

N
'1-'._\5

PANS
1 ‘i\rl\,l?::t\h N =
"ar:l i.h\"v:'l Tﬁ:;.'\ff




Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.15 0.2] sigma: 1.4142

Increasing the low threshold shorten edges




Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.2] sigma: 1.4142

Reference thresholds

N
'1-'._\5

PANS
1 ‘i\rl\,l?::t\h N =
"ar:l i.h\"v:'l Tﬁ:;.'\ff




Canny Edge Detection - changing hysteresis thresholds

Thresholds: [0.1 0.3] sigma: 1.4142

Increasing the high threshold reduces the
number of edges




Canny Edge Detection - changing the smoothing

Canny Edge Detection T: [0.005 0.2] 5: 14.1421
|

Increasing sigma reduces the number of
returned edges and makes these poorly
localized



Line Detection: Hough
Transform

Extracting Line Equations From Edges



Line Detection IS Important
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Line Detection: The problem

Finding all the lines passing through
points in (a binary) image

5 10 15 20 25 30 35 40 | Maputo, Boracchi



Line Detection: The problem

Finding all the lines passing through
points in (a binary) image

boundary image

Finding lines means o

* Having an analytical expression for
each line

* Estimating its direction, length a0

e Thus, clustering points belonging to the
same segment

5 10 15 20 25 30 35 40 | Maputo, Boracchi



Line Detection: The problem

Brut-force attempt:

Given n points in a binary image, find subsets that lie on straight lines

boundary image

 Compute all the lines passing 5 -
through any pair of points

10

* Check subsets of points that '
belong / are close to these lines ;

25
30
35
40
45
50

55
5 10 15 20 25 30 35 40 | Maputo, Boracchi



Line Detection: The problem

Brut-force attempt:

This requires computing

boundary image

-1 : , -
. 2 )stra|ght lines 5
n(n—1) . "
*n ( - ) comparisons 15
 Computationally prohibitive task 25
in all but the most trivial 30

applications ~ n? 35

40
45
50

55
5 10 15 20 25 30 35 40 | Maputo, Boracchi



Hough Transform

ldentify lines in the “parameter space” i.e. in the space of the parameters
identifying lines (m, q). Let a straight line be:

y=mx-+q

Now, for a given point (x;, y;), the equation g = —x;m + y; in the
variables m, g denotes the star of lines passing through (x;,y;)

Key intuition:
q=—Xx;m-+y;

Can be also seen as the equation of a straight line in m, g in the
parameter space

IACV, UEM Maputo, Boracchi



Line Intersections in the parameter space

The set of all the
(%5,V5) q parameters of the star
y of lines in (xq,y;) is a
straight line

q=—Xxm-+}y

o
(X1,¥1)

Point space Parameter space



Line Intersections in the parameter space

The two straight lines in the parameter
space intersect in a point,
corrisponding to a line passing to both

(x1,y1) and (x3,y,)
(x2,¥2) q

q=—Xm-+Yy,
q=—Xxm-+}y

x N

Point space Parameter space

o
(X1,¥1)



Line Intersections in the parameter space

(x2,Y2) q=—xm+Yy,

q=—Xxm-+}y

x N

Point space Parameter space
m, g such that y = mx + g passes

through both (x4, y7) and (x,,y,)

o
(X1,¥1)



Intersections in the parameter space

y (x2,Y2) g q=—xm+Yy,

ldea:
associate to each point a straight line in
the parameter space
ldentify the intersections in the parameter

space as the lines in the point space
X m

m, g such that y = mx + g passes
through both (x1,y7) and (x,,y5)

m+y;



Intersections in the parameter space

y (x2,¥2) q q=—Xm+ Yy,

In practice:
Consider a discretized parameter space
Accumulates all the discrete straight lines
Find the local maxima in the parameter

space
X m

m, g such that y = mx + g passes
through both (x1,y7) and (x,,y5)

m+y;



Hough Transform

ldentify lines in the “parameter space” i.e. in the space of the parameters
identifying lines.

q=—xm+y, V(x,Yy;)
Core Idea:
* Discretize the parameter space where m, q live

 Accumulate the consensus in the parameter space by summing +1 at
those bins where a straight line passess through

* Locate local maxima in the accumulator space

Major issue: m goes to infinity at vertical lines!

IACV, UEM Maputo, Boracchi



New Parametrization for Hough Transform

There is a more convenient way of expressing a strainght line for this
purpose:
x cos(0) + ysin(8) = p

Where {(p, 0), p€|-LL] 0 € [_gﬂ}

Same as before: a line in the image space
is a point in parameter Hough space.

p
6\

IACV, UEM Maputo, Boracchi



New parametrization of straight lines
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Hough Transform
The Hough transform identifies through an optimized voting procedure the
most represented lines

The voting procedure is performed in the «accumulator space» which is a
rid in (p, 6)-domain, for all the possible values.

From the Accumulator space we then extract local maxima, namely pairs
(p, 8) corresponding to lines passing through most of points

What is the maximum size of the domain?

IACV, UEM Maputo, Boracchi



Hough Transform: the algorithm

H:accumulator array (votes)

Initialize H[d,0]=0

for each edge point (x,y) in the image:

for 6 in range(Omin,Bmax):
pho = x cos(0) - y sin(0) P
H[d,0]+=1
Find the value(s) of (d,0) where H[d,0] is maximum

The detected line in the image is given by
d = x cos(B) - y sin(0)

Slide credit: S. Seitz



Hough Transform

Input Image Rendering of Transform Results

Distance from Centre

Angle

By Daf-de - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1121165



Thresholds: [0.08

Where is the facemask in H? |8 s

~
Y .
«F N .

0.2] sigma: 2.1213
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Thresholds: [0.08

What if we take more edges’ @ —
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Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any
line intersecting the H X W image’

IACV, UEM Maputo, Boracchi



Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any
line intersecting the H X W image’

It is the diagonal, so VH2 + W2

IACV, UEM Maputo, Boracchi



Bin size in the accumulator: an important parameter

How large are the bins in the accumulator?
e Too small: many weak peaks due to noise
* Just right: one strong peak per line, despite noise
* Too large:
 poor accuracy in locating the line
* many votes from clutter might end up in the same bin

A solution:

* keep bin size small but also vote for neighbors in the accumulator
(this is the same as “smoothing” the accumulator image)

IACV, UEM Maputo, Boracchi



Extension

From the edge detection algorithm, we know the direction of the gradient
for each edge pixel

Remember how that edge direction is orthogonal to gradient direction

We can make sure an edge pixel only votes for lines that have (almost)
the direction of the edge!

e Reduces the computation time

« Reduces the number of useless votes (better visibility of maxima
corresponding to real lines)

IACV, UEM Maputo, Boracchi



Hough Transform

The approach is not only limited to lines, but rather to any parametric
model that we are able to fit

- Circles can be fit in a 3d accumulator space

It is quite robust to noise

IACV, UEM Maputo, Boracchi



Hough Transform For Circles

slide Credits Alessandro Giusti, USI

IACV, UEM Maputo, Boracchi



Hugh Transform for Circles

1. Every edge point casts votes for all circles that are compatible with it

2. We choose circles that accumulated a lot of votes



How do we parametrize circles?

(x—a)*+ @y —-b) =r?

Center (x = a,y = b) and radius r : 3 degrees of freedom

If we assume r known, the Hough space is 2D:
e a: x coordinate of circle center
* b: y coordinate of circle center

The role of (a,b) and (x,y) are interchangeable, thus:

One point in image space maps to a circle in Hough space

IACV, UEM Maputo, Boracchi



Hough space for circles with known radius

: Intersection:
 most votes
. for center

éoccur here.

Slide credit: K. Grauman



Hough space for circles with unknown radius
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Image space

One point in image space maps to...

a cone in Hough space

Slide credit: K. Grauman

Hough space



Hough space for circles with unknown radius

g

Image space Hough space

When the radius is zero (a, b) = (x,y)

Slide credit: K. Grauman



If we know the gradient direction...

When increasing the radius, the center can only live
in a line, thus the linear relation between a, b

ir

/ N

fx,y)

Image space Hough space

Slide credit: K. Grauman



Hugh Transform for Circles

Initialize H accumulator to zeros
For every edge pixel (x,y):
For each possible radius value r:
For each possible gradient direction 0:
a=Xx-r cos(0) // column
b=y +r sin(0) // row
H[a,b,r] += 1



An example

Accumulator for radius equal to radius of a penny

Image Edges Accumulator for radius=penny

maximum

s

Slide credit: K. Grauman



An example

Accumulator for radius equal to radius of a quarter

Image Edges Accumulator for radius=quarter

Latl,

not a maximum

Slide credit: K. Grauman
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Conclusions

Advantages

 All points are processed independently, so the algorithm can cope with
occlusions and gaps

* Voting algorithms are robust to clutter, because points not corresponding to any
model are unlikely to contribute consistently to any single bin

e Can detect multiple instances of a model in a single pass

Disadvantages
e Only suitable for models with few parameters
e Must filter out spurious peaks in hough accumulator
* Quantization of hough space is tricky



Image Segmentation
(Unsupervised)



Image Segmentation

Goal: identify groups of pixel that “go together”

-Group together similar-looking pixel for efficiency

-Separate images into coherent objects

One way of looking at segmentation is clustering

IACV, UEM Maputo, Boracchi



Problem Formulation: Image Segmentation

Given an image I € RR*¢ >3 having as domain X, the goal of image
segmentation consists in estimating a partition {R;} such that

U Ri — X
i
andRiﬂRj=(Z), l?':]
There are two types of sementation:
e Unsupervised (what we address here)

« Supervised (or Semantic)

IACV, UEM Maputo, Boracchi



Unsupervised Segmentation

Segments R; are (e

* typically connected

e contain pixels having similar intensities

* |n practice, we associate to each set an identifier
(or label) which has no pre-defined meaning.

Clustering is described by a function
0: X - N

Mapping each pixel to the identifier of the
associated region

Achanta, et al SL/C superpixels
compared to state-of-the-art

compact description of the entire image superpixel methods. TPAMI 2012

Segments or «Superpixels» represent a more

IACV, UEM Maputo, Boracchi



Semantic Segmentation

Assign to each pixel of an image I € RR*¢ 3,

 alabel {{;} from a fixed set of categories
A = {"wheel", "cars’, ..., "castle”, "baboon"},

] > S e ARXC

where S(x,y) € A denotes the class associated to the pixel (x,y)

e segments contain pixels referring to the same object.

e This requires annotations and is typically carried out by neural
networks

* Label set has a predefined meaning

IACV, UEM Maputo, Boracchi



Semantic Segmentation

Objects appearing in the image:

Dining table Person

Zheng et al. “Conditional Random Fields as'Recurrent Neural Networks”, ICCV 2015



Unsupervised Segmentation by Clustering

IACV, UEM Maputo, Boracchi



Image Segmentation as Clustering

The most straightforward approach to unsupervised Image Segmentation
consists in clustering image pixels or image intensities

Clustering: grouping together similar data points and represent them with
a single token.

Challenges:
* What makes to points/images/patches similar?

 How do we compute overall grouping from pairwise similarities?

IACV, UEM Maputo, Boracchi



Why clustering’

Summarizing data

MiniBatchKMeansAffinityPropagation =~ MeanShift ~ SpectralClustering Ward AgglomerativeClustering DBSCAN Birch GaussianMixture

Counting

Prediction

Segmentation




How to cluster?

1.Agglomerative clustering: start with each point at its own cluster and
iteratively merge the clusters.

2.K-means clustering: Iteratively re-assign points to cluster

3.Mean shift: estimates modes of the probability distribution functions

IACV, UEM Maputo, Boracchi



Clustering: distance measures

Clustering is an unsupervised learning method. Given a series of items,
the goal is to group them into clusters.

We need:

-A pairwise distance (or a similarity)

-(sometimes) the desired number of clusters.

IACV, UEM Maputo, Boracchi



Commonly used measures

Euclidean Distance
Cosine similarity

T

d(z,y) = \/Z(ﬂ% — i)? s(x,y) = ||§|||T;|| = cos(0)

IACV, UEM Maputo, Boracchi



A (trivial) case study

Input image

Pixel count

‘ |
200

Intensity

Here image pixels are very easy
to gather in clusters according
to their intensities.

Input image

Slide Credits: cs131 Niebles and Krishna

Pixel count

6000

2000

4000 ¢

3000

2000

1000 -

]
-100 -50 0 50 100 150 200 250 300

Intensity

Here the problem becomes
more difficult and it is
aefinitively challenging on
natural images



A (trivial) case study: Intensities

+——0b(eo €€ (€ (CO0-0—C(gC(a O1C80
0 190 255
Intensity

3
a:

Slide Credits: cs131 Niebles and Krishna




Clustering algorithms

Here are a few clustering algorithms
e K-Means Clustering
* Mean-shift Clustering
* Agglomerative Clustering

IACV, UEM Maputo, Boracchi



K-Means Clustering

Undelying assumption: we know K, the number of centers

Goal: define a mapping 6:1 = N those minimizing Sum of Squared
Distance (55D) between points belonging to the cluster R; and the
nearest cluster center c;

SSD = Z > lx = il

R; X€R;

Being c¢; the center of the cluster R;.

IACV, UEM Maputo, Boracchi



The Goal of K-Means

Create clusters that minimize the variance in data, given the clusters.

But this is a “chicken and egg” problem

-We need centers to compute memberships

-We need memberships to compute center

+——08(e0 €8 (e (C0-0 - ¢(e(e OL1CO
0 190 255
|nterrsTty

. |

3
d:

" UEM Maputo, Boracchi



The Goal of K-means, reformulatead

Define a mapping 6 and the centroid of each cluster {¢;},i =1, ..., K
such that

N K
5°/(c)' = argmin ) > 5(x;,6)(x; — i)’
5,{Ci} : :
] l
Being
5(x,¢;) = {1 if x; € R; having center ¢
otherwise

The above optimization is difficult to solve, so we opt for a greedy
solution that alternates between the optimization of § and {c;}

IACV, UEM Maputo, Boracchi



K-Means algorithm

1. Randomly Initialize the cluster centers {c,} (t = 0)

2. Assign each point x; to the cluster R; of the closest centroid. This

corresponds to optimizing
N

K
. 2
0" = argmlnz z 5(xj, cl-)(xj — cl-)
5 — &
3. Update cluster centers as the means of its points

N K
{c;}} = argminz z 6(xj, ci)(xj — cl-)2
I

{ci}

4. Update t += 1 and go back to (2).

IACV, UEM Maputo, Boracchi



K-means Clustering Illustration
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Summary: K-Means clustering

PROS CONS
Finds cluster centers that minimize Need to choose K
conditional variance -> good Sensitive to outliers

representation

. _ Prone to local minima
Simple, fast and easy to implement

All clusters have the same
parameters

IACV, UEM Maputo, Boracchi



The Choice of K




The Choice of K

segmentation output K-means K= 5 segmentation output K-means K =10




Re m a r kS Average Intensities K = 2

The average Intensity Image is
obtained by associating to each region
R; the average intensity of pixels
belonging to R;

This can be seen as an adaptive form
Of COIOI’ quant|zat|0n original image Average Intensities K= 10

s s

IACV, UEM Maputo, Boracchi



Clustering Inputs

IACV, UEM Maputo, Boracchi



Average Intensities K= 2

Feature space

original image

In our previous examples, .
we have been showing a 4

7-D feature space ’
(intensity only).

e
BUt one can IOOk at more A ’ Average Intensities K= 10
various features! .
x;=1I1(r,c) ER ”

IACV, UEM Maputo, Boracchi



Colors

B

Instead of using only the intensities, G
we can use the colors of each pixel: @ @
this will lead to a 3-D feature space. Q (Re255

_ - N R

R(r,c)

Xi = G(T', C) e R3
B(r,c)

Different color spaces can be used
(XYZ, CIELUV, ...)

Still no notion of /ocality

Slide Credits: cs131 Niebles and Krishna



Intensity+position

We can use both the intensity and the position to group pixel.

This will encode similarity asd proximity

‘R(r,c)
G(r,c)
B(r,c)

r

C

€ R°

t Intensity

&

e

X

IACV, UEM Maputo, Boracchi



Intensity+position

segmentation output K-means K = 2 coord: 1 W: 1 segmentation output K-means K = 10 coord: 1 W: 1
& &
¢ « T
. &
original image ‘ @
L3 .
-
= \
. s -
L ]
. r What’s wrong with that?



Intensity+position

We can use both the intensity and the position to group pixel.

This will encode similarity asd proximity

The pixel location r, ¢ when expressed in pixel

‘R(r,c) coordinate assume values that are way larger than
G(r,c) the other components!
x; =|B(r,c)| € R’ o . .
ar They dominate in the compu.tatlorl.of the distance,
C ac that’s why we get to Voronoi partitions

We need to compensate for this and either use
coordinate relative to the image size, or scale these
by a weight a

IACV, UEM Maputo, Boracchi



Intensity+position: 2 step procedure

segmentation output K-means K = 20 coord: 1 W: 0.01 Average Intensities K = 20 coord: 1

&

original image

s

Use a first step quantization to remove bright
background, then segment only the dark parts of the
image.



Many others

Gradient (1o encode shapes)
Filter bank responses (to encode textures following similar directions)

Any combination of these features!



Inizialization

K means can suffer of poor initialization
K-means++
e (Choose K clusters at random

 Resample the position of other K centroids using probability
proportional to (x — ¢;)? being c; the closest center

e Run k —means

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding. Stanford.
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Back to Clustering..

IACV, UEM Maputo, Boracchi



Clustering algorithms

Here are a few clustering algorithms
e K-Means Clustering
* Mean-shift Clustering
* Agglomerative Clustering

IACV, UEM Maputo, Boracchi



Mean-shift clustering

The algorithm:

1. Initialize random seeds and search windows W
2. Calculate center of gravity (“mean”) of each W
3. Shift the search windows to their means

4. Repeat (2) and (3) until convergence.

In practice
* Build a tessellation of the space and run the procedure in parallel

* At the end, a cluster will contain all the points in the basin of
attraction of a mode.

IACV, UEM Maputo, Boracchi



Region of
o interest

Mean-Shift

Center of
mass

~ Mean Shift
& ) vector

Slide by Y. Ukrainitz & B. Sarel )
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Mean-Shift

Region of
® interest
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Mean-Shift

Region of
® interest

&
Center of
s mass
&
@ &
&
&
®
&
Mean Shift
F) vector

Slide by Y. Ukrainitz & B. Sarel .
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Mean-Shift [ Region of ]

Center of
mass

& o @ Mean Shift
® vector

Slide by Y. Ukrainitz & B. Sarel )
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Mean-Shift

Region of
® interest
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Mean-Shift
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Real Modality Analysis

O
@)
O O
;; J
Slide by Y. Ukrainitz & B. Sarel

Tessellate the space with windows Run the procedure in parallel
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode.
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Mean-shift segmentation

1.Find features (e.g.,intensities, colors)
2.Initialize windows at individual pixel location
3.Perform mean shift for each windows

4.Merge windows that end up near the same “peak” (or mode)
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To Summarize

Each pixel becomes a 5d
vector, having the spatial
and chromatic (Luv)
components

The algorithm is initialized
in each point to be
segmented

The label is the position of
the point of convergence

Algorithm 1: Pseudo-code for the Mean shift filtering

Input Dy = (a),ar),n=1,..., N 5-dimensional RGB points
Parameter: h.. h,

Data: ¢; = (¢, cf),i =1,.... N 5-dimensional L*u*v* points
Data: z; = (z/,2]),:=1,.... N 5-dimensional filtered points
Output :0,=1(0},0.), n=1,..., N 5-dimensional RGB points

forn=1..... N do
¢, = Convert RGB2LUV (7))

for:=1,.... N do
initialize j =1 and y;; = ¢; = (5. ¢})
while not converged do

e . 2
Tt ) 9‘1__3 c;
=1 c;q (H h |! )
T 4 2 7
21':19( )
Yij+1 € R” is a new position of the kernel window.
n- the number of points in the spatial kernel centered on v; ;

calculate y; ;41 according to vy; j11 = prp—
h

Yi,conv = Yij+1
S Y=I=b0s ~ .8 T
assign z; = (&7, Ui cony)

forn=1,.... N do
o = Convert LUV2RGB(=))

Demirovi¢, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.



MS Filtering!

Each pixel becomes a 5d
vector, having the spatial
and chromatic (Luv)
components

The algorithm is initialized
in each point to be
segmented

To each point, we associate
the destitination (it’s
filtering!)

Algorithm 1: Pseudo-code for the Mean shift filtering

Input Dy = (a),ar),n=1,..., N 5-dimensional RGB points
Parameter: h.. h,

Data: ¢; = (¢, cf),i =1,.... N 5-dimensional L*u*v* points
Data: z; = (z/,2]),:=1,.... N 5-dimensional filtered points
Output :0,=1(0},0.), n=1,..., N 5-dimensional RGB points

forn=1..... N do
¢, = Convert RGB2LUV (7))

for:=1,.... N do
initialize j =1 and y;; = ¢; = (5. ¢})
while not converged do

e . 2
Tt ) 9‘1__3 c;
=1 c;q (H h |! )
T 4 2 7
21':19( )
Yij+1 € R” is a new position of the kernel window.
n- the number of points in the spatial kernel centered on v; ;

calculate y; ;41 according to vy; j11 =

Yi,—
h

T

Yi,conv = Yi,j+1
Y=<t 0s. ~ .8 T
assign z; = (&7, Ui cony)

forn=1,.... N do
o = Convert LUV2RGB(=))

Demirovi¢, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.



S e g m e n t ati O n Algorithm 2: Pseudo-code for the Mean shift segmentation

Input D = (5,20 ), n=1,.... N 5-dimensional RGB points
Parameter: h,. h,, M

Data: ¢; = (¢, cf),e=1,..., N 5-dimensional L*u*v* points
Data: z; = (z,2]),2=1,..., N H-dimensional filtered points
Output :0,=(05,00). n=1,..., N H-dimensional RGB points

Run the mean shift filtering (Algorithm 1) and store
all information about convergence points z; = (5, y! .onw)-
for:=1..... N do

identify clusters {C,},—1... p of convergence points by
linking together all z; which are closer than hg
in the spatial domain and /A, in the range domain

for:=1..... N do
| assign label L; = {p

Zi € Cfp}
eliminate spatial regions containing less than M pixels
for:=1..... N do

L 0, = Convert LUV2RGB( z;)

Demirovié¢, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.



Summary: Mean-Shift clustering

PROS

Model-free (no assumption on
data clustes)

Just a single parameter
(windows size h)

Find a variable number of modes

Robust to outliers

CONS

Window-size selection is non-
trivial

Output depends on h
Computationally expensive

Does not scale well with
dimension of feature space



Mean-Shift Segmentation Results

Slide credit: Svetlana Lazebnik
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Problem: Computational Complexity i principle this procedure

should be repeated and
restarted in each point

O O
° ) o ® o o
* Need to shift many windows...
* Many computations will be redundant.

Slide credit: Bastian Leibe

uto, Boracchi



The basin of attraction of a mode, i.e. data

Speed U pS: BaSin Of Att ra Ction points visited by all the mean shift procedures

converging to that mode, automatically separate
O a cluster of arbitrary shape.

1. Assign all points within radius r of end point to the mode.

Slide credit: Bastian Leibe

uto, Boracchi



Speedups

2. Assign all points within radius r/c of the search path to the mode -> reduce the
number of data points to search.

Slide credit: Bastian Leibe

uto, Boracchi



Clustering algorithms

Here are a few clustering algorithms
e K-Means Clustering
* Mean-shift Clustering
* Agglomerative Clustering

IACV, UEM Maputo, Boracchi



Agglomerative Clustering

Unfortunately, we know how to
define distances between

2.Find most similar pair of clusters points, but not distances
between group of points.

1.Every point is its own cluster

3.Merge it into a “parent” cluster

4.Repeat (2) until only one cluster is left.

Hierarchical Clustering Dendrogram
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Distance between clusters

: 1
* Single linkage (minimum distance) £l =%
« Complete linkage (maximum distance) .
* Average distance B 2
 Many others... ([
How many clusters? 3

Threshold based on

Number of clusters N

Distance between merges

IACV, UEM Maputo, Boracchi



Summary: agglomerative clustering

PROS

Simple to implement
Clusters have adaptive shapes
Hierarchy of clusters

No need to specify the number of
clusters in advance

CONS

May lead to unbalanced clusters
We need to arbitrarily select a cut-
point or a threshold

Prone to local minima

Does not scale well ( 0(n3) )

IACV, UEM Maputo, Boracchi



A Few Relevant Segmentation Algorithms

IACV, UEM Maputo, Boracchi



Watershed

Idea: find segments as "catchment basins' or "watershed ridge lines' in an
image by treating it as a surface where light pixels represent high
elevations and dark pixels represent low elevations.

The basic idea consisted of placing a water source in each regional
minimum in the relief, to flood the entire relief from sources, and build
barriers when different water sources meet.

The resulting set of barriers constitutes a watershed by flooding. A
number of improvements, collectively called Priority-Flood, have since
been made to this algorithm. [Wikipedia, May 2022/

Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol. 38, July 1994, pp. 113-125.

Serge Beucher and Christian Lantuéj workshop on image processing, real-time edge and motion
detection (1979). http://cmm.ensmp.fr/~beucher/publi/watershed.pdf



http://cmm.ensmp.fr/%7Ebeucher/publi/watershed.pdf

Watershed

The watershed transform can be used to segment contiguous regions of
interest into distinct objects.

However, this rather simplistic intuition cannot straightforwardly be used
over images, it requires some preprocessing to let this work.

It has the major advantage of operating without having as input the
number of clusters

Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol. 38, July 1994, pp. 113-125.

Serge Beucher and Christian Lantuéj workshop on image processing, real-time edge and motion
detection (1979). http://cmm.ensmp.fr/~beucher/publi/watershed.pdf



http://cmm.ensmp.fr/%7Ebeucher/publi/watershed.pdf

Watershed illustrated

Synthetic Image

https://it. mathworks.com/help/images/ref/watershed.html



Watershed illustrated

Synthetic Image

https://it. mathworks.com/help/images/ref/watershed.html



Watershed Illustrated

Watershed Transform

https://it. mathworks.com/help/images/ref/watershed.html



Watershed is very sensitive

original image WaterShed




Watershed is very sensitive

original image Erode + WaterShed

¢

F | ¥

Some pre-processing can mitigate these problems, like eroson to make dark and flat
regions larger and smoother



Watershed is very sensitive

original image Erode + Masking + WaterShed

l’

I ‘

.. also making can improve the performance. Note that watershed has operated correctly
in the top left cells who were next to each other



SuperPixels

Superpixel algorithms group pixels into perceptually , — .
meaningful atomic regions, which can be used to replace . |
the rigid structure of the pixel grid. (G, }

Superpixels (i.e. connected regions R;) should

- Adhere to image boundaries

- Be fast to compute, memory efficient, simple to use

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012



SLIC: S

imple Linear Iterative Clustering

A simple, yet effective and efficient superpixel algorithm.

 Based on k —means, requires K

* Operates on intensity+location features, on Lab color spae

x; = [L(1y,¢;),a(ri, ¢;), b(ry, c;),1i, ¢l

* Centers initialized over a regular grid of step y/N/k, to promote
superpixels of same area (locations are adjusted to avoid edges)

* Pixels are associated to clusters belonging to a search neighborhood

 Standg
e Post-

ard centroid update
processing to enforce connectivity, re-assigning disjoint pixels to

the ¢

osest cluster

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.,, & Stisstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012
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