Image Analysis And Computer Vision

Course Slides

Slides can be found on my website
https://boracchi.faculty.polimi.it/
and follow Tutorials and Talks
https://boracchi.faculty.polimi.it/seminars.htm|

Colab Folder

In this folder you will find, regularly updated notebooks
https://drive.google.com/drive/folders/1JXY31r6MYzW53xlxc4hERx3IwZawQ5k?usp=sharing

Notebooks require you to "fill in" some codes or to extend codes we illustrate during lectures to new data/new challenges

Local Spatial Transformations: Correlation and Convolution

Giacomo Boracchi
giacomo.boracchi@polimi.it
Image Analysis and Computer Vision
UEM, Maputo
https://boracchi.faculty.polimi.it

Local Spatial Transformations:
 Transformations taking as input a set of intensities and returning a single intensity

Local (Spatial) Transformation

Operate locally "around" the neighborhood U of a given pixel.
In general, they can be written as

$$
G(r, c)=T_{U}[I](r, c)
$$

Where

- I is the input image to be transformed
- G is the output
- U is a neighbourhood, identifies a region of the image that will concur in the output definition
- $T_{U}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ or $T_{U}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a function

The output at pixel (r, c) i.e., $T_{U}[I](r, c)$ is defined by all the intensity values: $\{I(u, v),(u-r, v-c) \in U\}$

Local (Spatial) Filters

The dashed square represents $\{I(u, v),(u-r, v-c) \in U\}$

Local (Spatial) Filters

The dashed square represents $\{I(u, v),(u-r, v-c) \in U\}$

	T_{U}		$T_{U}[I]$
		(r, c)	

Local (Spatial) Filters

The dashed square represents $\{I(u, v),(u-r, v-c) \in U\}$

And (u, v) has to be interpreted as a "displacement vector" w.r.t. the neighborhood center (r, c), e.g., $(u, v) \in\{(1,-1),(1,0),(1,-1) \ldots\}$

Local (Spatial) Filters

- The location of the output does not change
- Space invariant transformations are repeated for each pixel (don't depend on the value of r, c)
- $\quad T$ can be either linear or nonlinear

Local Linear Filters

Linear Transformation: Linearity implies that the output $T[I](r, c)$ is a linear combination of the pixels in U :

$$
T[I](r, c)=\sum_{(u, v) \in U} w_{i}(u, v) * I(r+u, c+v)
$$

Considering some weights $\left\{w_{i}\right\}$
We can consider weights as an image, or a filter h
The filter h entirely defines this operation

Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix \boldsymbol{w}

Correlation

The correlation among a filter $w=\left\{w_{i j}\right\}$ and an image is defined as

$$
(I \otimes w)(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} w(u, v) * I(r+u, c+v)
$$

where the filter h is of size $(2 L+1) \times(2 L+1)$ and contains the weights defined before as w. The filter w is also sometimes called "kernel"

w

Correlation

The correlation among a filter $w=\left\{w_{i j}\right\}$ and an image is defined as

$$
(I \otimes w)(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} w(u, v) * I(r+u, c+v)
$$

np.sum(np.multiply(region,w))

w

Correlation

```
acc = 0;
for i in np.arange(template_height)
    for j in np.aragne(template_width)
    acc = acc + image[y + i, x + j]*template[i,j]
```

image[x+ template_height//2, y + template_width//2] = acc $x \quad x+i$

Correlation for BINARY target matching

y, original image

y, orginal image			
IDRH1	DIF1	Det1	\#FA1
5.251	5.145	NO	2.555
5.794	5.142	NO	2.555
5.765	5.459	NO	6.555

w
template
ND
NO
HO

Easy to understand with binary images
Target used as a filter

I DRH1
 5.251
 5.794
 5.765
 DIF1
 5.145
 5.142
 5.459
 $\begin{array}{cr}\text { Det1 } & \text { \#FA1 } \\ \text { NO } & 2.555 \\ \text { NO } & 2.555 \\ \text { NO } & 6.555\end{array}$

NO
NO
NO

NITIRAM1 $\mathrm{NOS}^{2} 201$

DIF1
5. 145

Det1
\#F:1
2.9515

NO
NO
NO

I DRH1
 DIF1
 5.251
 5.145
 5.794
 5.765
 $\begin{array}{lr}\text { Det1 } & \text { \#FA1 } \\ \text { ND } & 2.5515 \\ \text { ND } & 2.555 \\ \text { ND } & 6.555\end{array}$

NO
NO
HO

I QR +1
 DIF1
 5.251
 5.145
 5.142
 5.459
 $\begin{array}{cr}\text { Det1 } & \text { \#FA1 } \\ \text { NO } & 2.555 \\ \text { NO } & 2.555 \\ \text { NO } & 6.555\end{array}$

NiO ND HO

However...

Each point in a white area is as big as the template achieve the maxium value (togheter with the perfect match)

However...

Normalized (Zero) Cross Correlation

A very straightforward approach to template matching

Normalized Cross Correlation $\operatorname{NCC}(A, B) \in[-1,1]$ is defined as

$$
N C C(A, B)=\frac{N(A, B)}{\sqrt{N(A, A) N(B, B)}}
$$

where

$$
N(A, B)=\iint_{W}(A(x, y)-\bar{A})(B(x, y)-\bar{B}) d x d y
$$

and \bar{A} represents the average image value on patch A, similarly $\bar{B} . W$ is the support of A or B.

```
Normalized (Zero) Cross Correlation
A = region.flatten()
mean_A = np.mean(B)
A = A - mean_A
B = template.flatten()
mean_B = np.mean(B)
B = B - mean_B
correlation = np.dot(A,B) /np.sqrt( np.dot(A,A) * np.dot(B,B) )
```


Do it yourself on Colab!

Image: "te.jpg"

Template: "template.jpg"

Find in the shared folder and try to perform template matching, using correlation.

Do it yourself!

Image: "te.jpg"
Template: "template.jpg"

Find in the shared folder and try to perform template matching, using correlation. Does it work?
How can you resolve the problem?

Normalized Cross Correlation

Normalized Cross Correlation

Remarks:

- NCC yields a measure in the range $[-1,1]$,
- NCC is invariant to changes in the average intensity.
- While this seems quite computationally demanding, there exists fast implementations where local averages are computed by running sirfms (inte, eqral image)
- A is the region in the image,
- B is the filter
and they are comparable in size

Integral Image

The integral image S is defined from an image I as follows

$$
S(x, y)=\sum_{r \leq y, c \leq x} I(r, c)
$$

Using the Integral Image

The integral image allows fast computation of the sum (average) of any rectangular region in the image

Disparity Map Estimation

Disparity Map Estimation

There are different measures to compare a patch in I_{1} with all the candidate matches in I_{2}

Disparity Map Estimation

There are different measures to compare a patch in I_{1} with all the candidate matches in I_{2}

Stereo Pairs http://vision.middlebury.edu/stereo/data/

Stereo Pairs http://vision.middlebury.edu/stereo/data/

Stereo Pairs http://vision.middlebury.edu/stereo/data/

Convolution

Correlation and Convolution

The correlation among a filter \boldsymbol{w} and an image is defined as

$$
(I \otimes \boldsymbol{w})(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} w(u, v) * I(r+u, c+v)
$$

where the filter \boldsymbol{w} is of size $(2 L+1) \times(2 L+1)$
The convolution among a filter \boldsymbol{w} and an image is defined as

$$
(I \circledast \boldsymbol{w})(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} w(u, v) * I(r-u, c-v)
$$

where the filter \boldsymbol{w} is of size $(2 L+1) \times(2 L+1)$
There is just a swap in the filter before computing correlation!

Convolution - and filter flip

Let I, \boldsymbol{w} be two discrete 2 D signals of $(2 L+1) \times(2 L+1)$

Convolution - and filter flip

Let I, \boldsymbol{w} be two discrete 2 D signals of $(2 L+1) \times(2 L+1)$

$$
G(r, c)=(I \circledast \boldsymbol{w})(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} I(r+u, c+v) w(-u,-v)
$$

In this particular case $L=1$ and both the image and the filter have size 3×3
The convolution is evaluated at $(r, c)=(0,0)$

Convolution - and filter flip

Let I, h be two discrete 2D signals of $(2 L+1) \times(2 L+1)$

$$
G(r, c)=(I \circledast w)(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} I(r+u, c+v) w(-u,-v)
$$

Convolution

Let I, \boldsymbol{w} be two discrete 2 D signals of $(2 L+1) \times(2 L+1)$

$$
G(r, c)=(I \odot w)(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} I(r+u, c+v) w(-u,-v)
$$

$$
G(r, c)=w_{9} I_{1}+w_{8} I_{2}+w_{7} I_{3}+w_{6} I_{4}+w_{5} I_{5}+w_{5} I_{6}+w_{3} I_{7}+w_{2} I_{8}+w_{1} I_{9}
$$

Convolution and filter flip

$$
(I \circledast \boldsymbol{w})(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} w(u, v) * I(r-u, c-v)
$$

$$
(I \circledast \boldsymbol{w})(r, c)=\sum_{u=-L}^{L} \sum_{v=-L}^{L} I(r+u, c+v) w(-u,-v)
$$

Flipped image

$w(-1,-1)$	$w(-1,0)$	$w(-1,1)$
$w(0,-1)$	$w(0,0)$	$w(0,1)$
$w(1,-1)$	$w(1,0)$	$w(1,1)$

$I(1,1)$	$I(1,0)$	$I(1,-1)$
$I(0,1)$	$I(0,0)$	$I(0,-1)$
$I(-1,1)$	$I(-1,0)$	$I(-1,-1)$

$\cdots+w(-1,-1) I(1,1)+\cdots+w(1,0) I(-1,0)+\cdots$
Flipped filter

$w(1,1)$	$w(1,0)$	$w(1,-1)$
$w(0,1)$	$w(0,0)$	$w(0,-1)$
$w(-1,1)$	$w(-1,0)$	$w(-1,-1)$

$I(-1,-1)$	$I(-1,0)$	$I(-1,1)$
$I(0,-1)$	$I(0,0)$	$I(0,1)$
$I(1,-1)$	$I(1,0)$	$I(1,1)$

$\ldots+w(1,0) I(-1,0)+\cdots+w(-1,-1) I(1,1)+\cdots$
Flipping the image and applying the filter = Applying the flipped filter

Question

The filter (a.k.a. the kernel) yields the coefficients used to compute the linear combination of the input to obtain the output

Let's have a look at 1D convolution

Let's have a look at 1D Convolution

Let us consider a id signal y and a filter \boldsymbol{w}.
Their convolution is also a signal $z=y \otimes \boldsymbol{w}$.
For continuous-domain 1D signals and filters

$$
z(\tau)=(y \otimes w)(\tau)=\int_{\mathbb{R}} y(t) w(\tau-t) d t
$$

that is equivalent to

$$
z(\tau)=(y \otimes \boldsymbol{w})(\tau)=\int_{\mathbb{R}} y(\tau-t) \boldsymbol{w}(t) d t
$$

At each τ, the convolution is the area under $y(t)$ weighted by the function $w(-t)$ shifted by τ

Let's have a look at 1D Convolution

For discrete signals and filters

$$
z(n)=(y \otimes \boldsymbol{w})(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m)
$$

where the filter has $(2 L+1)$ samples

Let's have a look at 1D Convolution

For discrete signals and filters

$$
z(n)=(y \otimes \boldsymbol{w})(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m)
$$

where the filter has $(2 L+1)$ samples

$y(-4)$	$y(-3)$	$y(-2)$	$y(-1)$	$y(0)$	$y(1)$	$y(2)$	$y(3)$	$y(4)$

Let's have a look at 1D Convolution

For discrete signals and filters

$$
z(n)=(y \otimes \boldsymbol{w})(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m)
$$

where the filter has $(2 L+1)$ samples

$y(-4)$	$y(-3)$	$y(-2)$	$y(-1)$	$y(0)$	$y(1)$	$y(2)$	$y(3)$	$y(4)$

Let's have a look at 1D Convolution

For discrete signals and filters

$$
z(n)=(y \otimes \boldsymbol{w})(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m)
$$

where the filter has $(2 L+1)$ samples

$y(-4)$	$y(-3)$	$y(-2)$	$y(-1)$	$y(0)$	$y(1)$	$y(2)$	$y(3)$	$y(4)$

Let's have a look at 1D Convolution

For discrete signals and filters

$$
z(n)=(y \otimes \boldsymbol{w})(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m)
$$

where the filter has $(2 L+1)$ samples

$y(-4)$	$y(-3)$	$y(-2)$	$y(-1)$	$y(0)$	$y(1)$	$y(2)$	$y(3)$	$y(4)$

1D Convolution - example

1D Convolution - example

$$
\begin{aligned}
z(n) & =(y \otimes w)(n)=\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m) \\
y & =\sin (x), \boldsymbol{w}=\left[\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right], L=2 \\
0.766 & \approx \frac{1}{5} * 0.48+\frac{1}{5} * 0.84+\frac{1}{5} * 1+\frac{1}{5} * 0.91+\frac{1}{5} * 0.60
\end{aligned}
$$

1D Convolution - example

$$
\begin{aligned}
z(n)=(y \otimes \boldsymbol{w})(n) & =\sum_{m=-L}^{L} y(n-m) \boldsymbol{w}(m) \\
& =\sum_{m=-L}^{L} y(n+m) \boldsymbol{w}(-m)
\end{aligned}
$$

What about an imupulse?

What about an imupulse?

What about noise?

What about noise?

Let's go back to 2D convolution now

A well-known Test Image - Lena

A Trivial example

Linear Filtering

$* \frac{1}{9}$| 1 | 1 | 1 |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

The original Lena image

Filtered Lena Image

$* \frac{1}{25}$| 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |$=$

The original Lena image

The filtered Lena image

What about normalization?

...what about

$\otimes \frac{2}{25} \cdot$| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |$=$

... convolution is linear

...what about

\otimes| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

II

... convolution is linear

2D Gaussian Filter

Continuous Function

$$
H_{\sigma}(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}\right)
$$

Discrete kernel: assuming G is a $(2 k+1) \times(2 k+1)$ filter

$$
G(i, j)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\left(i^{2}+j^{2}\right)}{2 \sigma^{2}}\right)
$$

That is then normalized such that $\sum_{i=-k}^{k} \sum_{j=-k}^{k} G(i, j)=1$

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0						
0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.0
0.0	0.0	0.01	0.01	0.02	0.02	0.01	0.01
0.0	0.0	0.0					
0.0	0.01	0.01	0.02	0.03	0.03	0.02	0.01
0.0 .01	0.0						
0.0	0.01	0.02	0.03	0.04	0.04	0.03	0.02
0.01	0.0						
0.0	0.01	0.02	0.03	0.04	0.04	0.03	0.02
0.0	0.01	0.01	0.02	0.03	0.03	0.02	0.01
0.0							
0.0	0.0	0.01	0.01	0.02	0.02	0.01	0.01
0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.0
0.0	0.0	0.0					
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0					

2D Gaussian Filter

```
sigma = 2
gaussian = cv2.getGaussianKernel(filter_size, sigma)
filter_gaussian = np.outer(gaussian, gaussian)
```

0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0						
0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.0
0.0	0.0	0.0					
0.0	0.0	0.01	0.01	0.02	0.02	0.01	0.01
0.0	0.01	0.01	0.02	0.03	0.03	0.02	0.01
0.0	0.01	0.02	0.03	0.04	0.04	0.03	0.02
0.0							
0.0	0.01	0.02	0.03	0.04	0.04	0.03	0.02
0.0	0.01	0.01	0.02	0.03	0.03	0.02	0.01
0.0	0.01	0.0					
0.0	0.0	0.01	0.01	0.02	0.02	0.01	0.01
0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.0
0.0	0.0	0.0					
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0						

Weighted local averaging filters: Gaussian Filter

Weighted local averaging filters: Gaussian Filter

Convolution Properties

Properties of Convolution: Linearity

It is a linear operator

$$
\left(\left(\lambda I_{1}+\mu I_{2}\right) \circledast \boldsymbol{w}\right)(r, c)=\lambda\left(I_{1} \circledast \boldsymbol{w}\right)(r, c)+\mu\left(I_{2} \circledast \boldsymbol{w}\right)(r, c)
$$

where $\lambda, \mu \in \mathbb{R}$

Obviously, when the filter is center-symmetric, convolution and correlation are equivalent

Properties of Convolution (and Padding)

It is commutative (in principle)

$$
I_{1} \circledast I_{2}=I_{2} \circledast I_{1}
$$

However, in discrete signals it depends on the padding criteria In continuous domain it holds as well as on periodic signals

Filter must be centered in the colored region to remain inside the image

Original image is in white, light blue values are padded to zero to enable convolution at image boundaries

Is Convolution Commutative?

Is Convolution Commutative?

Translation

${ }^{\circledast}$
II

Translation

Remember the filter has to be flipped before convolution

Is Convolution Commutative?

Properties of Convolution: Associative

It is also associative

$$
f \circledast(g \circledast \boldsymbol{w})=(f \circledast g) \circledast \boldsymbol{w}=f \circledast g \circledast \boldsymbol{w}
$$

and dissociative

$$
f \circledast(g+\boldsymbol{w})=f \circledast g+f \circledast \boldsymbol{w}
$$

Properties of Convolution: Shift invariance

It is also associative

$$
f \circledast(g \circledast \boldsymbol{w})=(f \circledast g) \circledast \boldsymbol{w}=f \circledast g \circledast \boldsymbol{w}
$$

and dissociative

$$
f \circledast(g+\boldsymbol{w})=f \circledast g+f \circledast \boldsymbol{w}
$$

It is shift-invariant, namely

$$
\left(I\left(\cdot-r_{0},-c_{0}\right) \circledast \boldsymbol{w}\right)(r, c)=(I \circledast \boldsymbol{w})\left(r-r_{0}, c-c_{0}\right)
$$

Any linear and shift invariant system can be written as a convolution

A bit of theory behind convolution

Giacomo Boracchi
giacomo.boracchi@polimi.it
Image Analysis and Computer Vision
UEM, Maputo
https://boracchi.faculty.polimi.it

Systems

Consider a system H as a black box that processes an input signal (f) and gives the output (i.e, $H[f]$)

The input is a signal
The output is a signal

Systems

Consider a system H as a black box that processes an input signal (f) and gives the output (i.e, $H[f]$)

$$
f(t) \longrightarrow \mathcal{H} \longrightarrow(\mathcal{H} f)(t)
$$

In our case, f is a digital image (a 2D matrix), but in principle could be any (analogic or digital) n-dimensional signal

Linearity and Time Invariance

A system is linear if and only if

$$
H[\lambda f(t)+\mu g(t)]=\lambda H[f](t)+\mu H[g](t)
$$

holds for any $\lambda, \mu \in \mathbb{R}$ and for f, g arbitrary signals (this is the canonical definition of linearity for an operator)

A system is time (or shift) - invariant if and only if

$$
H\left[f\left(t-t_{0}\right)\right]=H[f]\left(t-t_{0}\right)
$$

holds for any $t_{0} \in \mathbb{R}$ and for any signal f

Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent convolutional operator

- LTI systems are characterized entirely by a single function, the filter

Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent convolutional operator

- LTI systems are characterized entirely by a single function, the filter
- The filter is also called system's the impulse response or point spread function, as it corresponds to the output of an impulse fed to the system

The Impulse Response

Take as input image a discrete Dirac

This is why h is also called the "Point Spread Function"

Denoising

An application scenario for digital filters

Low - Pass

The effects of smoothing Each row shows smoothing with gaussians of different width; each column shows different realisations of an image of gaussian noise.

Denoising: The Issue

A Detail in Camera Raw Image

Denoising: The Issue

Denoised

Denoising: The Issue

A Detail in Camera Raw Image

Denoising: The Issue

Denoised

Image Formation Model

Observation model is

$$
z(x)=y(x)+\eta(x), \quad x \in \mathcal{X}
$$

Where

- x denotes the pixel coordinates in the domain $\mathcal{X} \subset \mathbb{Z}^{2}$
- y is the original (noise-free and unknown) image
- z is the noisy observation
- η is the noise realization

Image Formation Model

Observation model is

$$
z(x)=y(x)+\eta(x), \quad x \in \mathcal{X}
$$

The goal is to compute \hat{y} realistic estimate of y, given z and the distribution of η.

For the sake of simplicity we assume AWG: $\eta \sim N\left(0, \sigma^{2}\right)$ and $\eta(x)$ independent realizations.

The noise standard deviation σ is also assumed as known.

Convolution and Regression

Observation model is

$$
z(x)=y(x)+\eta(x) \quad x \in X
$$

Consider a regression problem

Fitting and Convolution

The convolution provides the BLUE (Best Linear Unbiased Estimator) for regression when the image y is constant
The problem: estimating the constant C that minimizes a weighted loss over noisy observations

$$
\widehat{y_{h}}\left(x_{0}\right)=\underset{C}{\operatorname{argmin}} \sum_{x_{s} \in X} w_{h}\left(x_{0}-x_{s}\right)\left(z\left(x_{s}\right)-C\right)^{2}
$$

$$
w_{h}=\left\{w_{h}(x)\right\} \quad \text { s.t. } \quad \sum_{x \in X} w_{h}(x)=1
$$

This problem can e solved by computing the convolution of the image z against a filter whose coefficients are the error weights

$$
\widehat{y}\left(x_{0}\right)=\left(z \circledast w_{h}\right)\left(x_{0}\right)
$$

Image Formation Model

Observation model is

$$
z(x)=y(x)+\eta(x) \quad x \in X
$$

Thus we can pursue a "regression-approach", but on images it may not be convenient to assume a parametric expression of y on X

Image Formation Model

Observation model is

$$
z(x)=y(x)+\eta(x) \quad x \in X
$$

Thus we can pursue a "regression-approach", but on images it may not be convenient to assume a parametric expression of y on X

Local Smoothing

Additive Gaussian
White Noise

$$
\eta \approx N(\mu, \sigma)
$$

After Gaussian Smoothing

Denoising Approaches

Parametric Approaches

- Transform Domain Filtering, they assume the noisy-free signal is somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary based decomposition)

Denoising Approaches

Parametric Approaches

- Transform Domain Filtering, they assume the noisy-free signal is somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary based decomposition)

Non Parametric Approaches

- Local Smoothing / Local Approximation
- Non Local Methods

Denoising Approaches

Parametric Approaches

- Transform Domain Filtering, they assume the noisy-free signal is somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary based decomposition)

Non Parametric Approaches

- Local Smoothing / Local Approximation
- Non Local Methods

Estimating $y(x)$ from $z(x)$ can be statistically treated as regression of z given x

$$
\hat{y}(x)=\mathrm{E}[z \mid x]
$$

Denoising Approaches

Parametric Approaches

- Transform Domain Filtering, they assume the noisy-free signal is somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary based decomposition)
Non Parametric Approaches
- Local Smoothing / Local Approximation
- Non Local Methods

Estimating $y(x)$ from $z(x)$ can be statistically treated as regression of z given x

$$
\hat{y}(x)=\mathrm{E}[z \mid x]
$$

Denoising Approaches

Spatially adaptive methods, The basic principle:

- there are no simple models able to describe the whole image y, thus perform the regression $\hat{y}(x)=\mathrm{E}[z \mid x]$
- Adopt a simple model in small image regions. For instance

$$
\forall x \in X, \quad \exists \widetilde{U}_{x} \text { s.t. } y_{\mid \widetilde{U}_{x}} \text { is a polynomial }
$$

- Define, in each image pixel, the "best neighborhood" where a simple parametric model can be enforced to perform regression.
- For instance, assume that on a suitable pixel-dependent neighborhood, where the image can be described by a polynomial

Ideal neighborhood - an illustrative example

Ideal in the sense that it defines the support of a pointwise Least Square Estimator of the reference point.

Typically, even in simple images, every point has its own different ideal neighborhood.
For practical reasons, the ideal neighborhood is assumed starshaped Further details at LASIP c/o Tampere University of Technology http://www.cs.tut.fi/~lasip/

Neighborhood discretization

A suitable discretization of this neighborhood is obtained by using a set of directional LPA kernels $\left\{g_{\theta, h}\right\}_{\theta, h}$

where θ determines the orientation of the kernel support, and h controls the scale of kernel support.

Ideal neighborhood - an illustrative example

Ideal in the sense that the neighborhood defines the support of pointwise Least Square Estimator of the reference point.

Examples of Adaptively Selected Neighorhoods

Define, $\forall x \in X$, the "ideal" neighborhood \widetilde{U}_{x}
Compute the denoised estimate at x by "using" only pixels in \widetilde{U}_{x} and a polynomial model to perofrm regression $\hat{y}(x)=\mathrm{E}\left[z \mid x, \widetilde{U}_{x}\right]$

Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule

Example of Performance

Original, noisy, denoised using polynomial regression on adaptively defined neighborhoods (LPA-ICI)

Blur at Noise In Image Formation

Noise

The acquired image is different from the original scene because of sensor limitations

The CCD sensors and the whole acquisition pipeline are affected by different sources of noise:

- Thermal noise
- Quantization noise
- Dark current noise
- Photon-counting noise

And other aberrations such as dark fixed-pattern noise, light fixed-pattern noise,...

In the most simple settings

Observation model is

$$
z(x)=y(x)+\eta(x), \quad x \in \mathcal{X}
$$

Where

- x denotes the pixel coordinates in the domain $\mathcal{X} \subset \mathbb{Z}^{2}$
- y is the original (noise-free and unknown) image
- z is the noisy observation
- η is the noise realization

Additive Gaussian White Noise (AWGN)

Additive White Gaussian Noise is a frequently encountered assumption

White Gaussian noise is a very practical approximation not to account for each noise source.

However, this is a very coarse approximation, since we all have experienced that dark regions are typically more be noisy than correctly exposed ones.

Signal Dependent Noise Model

Photon counting, like other counting processes, are modelled by a Poisson distribution.

Image formation model becomes:

$$
z(x)=u(x)+\eta(x), \quad x \in \mathcal{X}
$$

Where

$$
u(x) \sim \mathcal{P}(\lambda \cdot y(x))
$$

- \mathcal{P} denotes the Poisson distribution, $\lambda>0$ is the quantum efficiency of the sensor.
- $\eta \sim \mathcal{N}\left(0, \sigma^{2}\right)$ is the Gaussian noise term due to thermal and quantization noise

Signal Dependent Noise Term

The term u includes the signal-dependent noise

$$
u(x) \sim \mathcal{P}(\lambda \cdot y(x))
$$

Remarks from Poisson distribution

- $\mathrm{E}[u(x)]=\lambda \cdot y(x)$
- $\operatorname{var}[u(x)]=\lambda \cdot y(x) \rightarrow$ The noise variance depends on the amount of light reaching the sensor
- $\operatorname{SNR}(u(x))=\frac{\mathrm{E}[u(x)]^{2}}{\operatorname{var}[u(x)]}=\lambda \cdot y(x)$

The noise variance is higher in brighter regions, but the signal to noise is lower here!

Here is an Example of Noisy Picture

Here the variance is large, but denoising is relatively simple since the SNR is high

Signal Dependent Noise

Poisson and Gaussian noise component can be conveniently approximated as:

$$
z(x)=y(x)+\sigma(y(x)) \eta(x), \quad x \in \mathcal{X}
$$

Where

- σ is a function defining the noise variance of the overall noise component that depends on the true image intensity y. A good model $\sigma^{2}=a y(x)+b$, where the parameters a, b depend on the camera
- $\eta \sim N(0,1)$ is white noise

Signal Dependent Noise

Poisson and Gaussian noise component can be conveniently approximated as:
It is apparent that signal-dependent noise model needs to be taken into Whe account in denoising algorithms.... Therefore you need special algorithms for signal-dependent noise
' It is possible to estimate Variance Stabilizing Transforms (VST), which perform I an intensity mapping to change the signal to have (approximately) unitary , variance disregarding the light intensity.

In practice, it is better to perform VST + denoising for AWGN, rather than design denoising algorithms that are specific for signal-dependent noise

Signal and Time Dependent Noise

The exposure time heavily impact on noise, since the noise variance ultimately depends on the amount of light reaching the sensor.

This can be conveniently approximated as:

$$
z_{T}(x)=u_{T}(x)+\eta(x), \quad x \in \mathcal{X}
$$

Where

$$
u_{T}(x) \sim \mathcal{P}\left(\lambda \int_{0}^{T} y(x-s(t)) d t\right)
$$

And \mathcal{P} denotes the Poisson distribution, λ is the quantum efficiency and $s(\cdot)$ is the trajectory of the sensor due to motion.

Motion results in Motion Blur

Point Spread Function

The Point Spread Function (we will see later the reason of this name) can be obtained by discretizing the camera trajectory $s(\cdot)$ into an image

This term is responsible of the blur in the image

$$
\int_{0}^{T} y(x-s(t)) d t
$$

Exposure time 1/13"

Exposure time 0.8"

The Blur-Noise Trade-Off

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012

Nonlinear Filters

Giacomo Boracchi
giacomo.boracchi@polimi.it
Image Analysis and Computer Vision
UEM, Maputo
https://boracchi.faculty.polimi.it

Nonlinear Filters

Non Linear Filters are such that the relation

$$
H[\lambda f(t)+\mu g(t)]=\lambda H[f](t)+\mu H[g](t)
$$

does not hold, at least for some value of λ, μ, f, g or point t.
Examples of nonlinear filter are

- Median Filter (Weighted Median)
- Ordered Statistics based Filters
- Threshold, Shrinkage

There are many others, such as data adaptive filtering procedures (e.g LPA-ICI)

Blockwise Median

Block-wise median: replaces each pixel with the median of its neighborhood. It is still a local spatial transformation!

This is edge-preserving and robust to outliers!

$$
m=\text { median }(1,3,0,2,10,2,4,1,1)=2
$$

$$
r
$$

Salt-and-pepper noise

Salt and Pepper (Impulsive) noise

Denoisng using local smoothing 3×3

Denoisng with median 3×3

Salt and Pepper (Impulsive) noise

Morphological Operations

Ordered Statitiscs and Blob Labeling

Binary images

A binary image is defined as $I \in\{0,1\}^{R \times C}$

Each pixel can be either true (1) / false (0)

Typically binary images are the result of preprocessing operations including thresholding

An overview on morphological operations

Erosion, Dilation

Open, Closure

We assume the image being processed is binary, as these operators are typically meant for refining "mask" images.

Boolean operations on binary images $I \in\{0,1\}^{R \times C}$

True 1 / false 0

NOT_A = A == 0

UNION of binary images

Equivalent to the OR operation

$$
A \cup B=A+B>0
$$

INTERSECTION of binary images

Equivalent to the AND operation
A

$$
A \cap B=A+B>1
$$

On binary images it is possible to define XOR

$$
\mathrm{XOR}(\mathrm{~A}, \mathrm{~B})=A \cup B-A \cap B
$$

What do we use this for?

Intersection over the Union (IoU, Jaccard Index)

Intersection over the Union (IoU, Jaccard Index)

Intersection over the Union (IoU, Jaccard Index)

IoU: 0.4034

Poor

Good

IoU: 0.9264

Excellent

Jaccard Index (IoU)

It is a statistical measure of similarity between two sets, being in case of images the coordinates of the pixels set to true

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

It ranges between $[0,1]$ being $J(A, B)=0$ when A and B are disjoint, and $J(A, B)=1$, when the two sets coincides.

It is a standard reference measure for detection performance

Jaccard Index (IoU)

It is not necessarily defined for bounding boxes (even though most of deep learning networks for detections provide bb as outputs)

Jaccard Index (IoU)

Jaccard Index (IoU)

Jaccard Index (IoU)

Jaccard Index (IoU)

Filters on binary images

It is possible to define filtering operations between binary images

Consider also binary filters, i.e. spatial filters having binary weights.

In the context of object detection, these can be used to refine the detection boundaries

Erosion

General definition:
Nonlinear Filtering procedure that replaces each pixel value, with the minimum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule: $E(x)=1$ iff the image in the neighbor is constantly 1

This operation reduces thus the boundaries of binary images

It can be interpreted as an AND operation of the image and the neighbour overlapped at each pixel

Erosion

Erosion

The gray area corresponds
to the input

Erosion

Erosion removes half size of the structuring element used as filter

Erosion

Erosion

U

Dilation

General definition:
Nonlinear Filtering procedure that replaces to each pixel value, with the maximum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule: $\mathrm{E}(\mathrm{x})=1$ iff at least a pixel in the neighbor is 1

This operation grows fat the boundaries of binary images

It can be interpreted as an OR operation of the image and the neighbour overlapped at each pixel

Dilation

U

DILATE(A, U)

Dilation

Dilation

Dilation expands half size of the structuring element used as filter

Dilation

Dilation

Open and Closure

Open Erosion followed by a Dilation

Closure Dilation followed by an Erosion

Open

Open Erosion followed by a Dilation

- Smooths the contours of an object
- Typically eliminates thin protrusions

Open

U
■

Open

U
■

Open

U
The gray area corresponds to the input

Closure

Closure Dilation followed by an Erosion

- Smooths the contours of an object, typically creates bridges
- Generally fuses narrow breaks

Close

Close

The gray spot was «false» in the input

There are several other Non Linear Filters

Ordered Statistic based

- Median Filter
- Weight Ordered Statistic Filter (being erosion and dilation special cases)
- Trimmed Mean
- Hybrid Median

Ordered statistics filters (including erosion and dilation) can be applied to grayscale images as well, as their definition is general

In Python: skimage.morphology

Digital Image Filters: Derivatives and Edges

Giacomo Boracchi
Image Analysis and Computer Vision Politecnico di Milano

November 19, 2021
Book: GW chapters 3, 9, 10

Derivatives Estimation

Differentiation and convolution

Recall the definition of derivative

$$
\frac{\partial f\left(x_{0}\right)}{\partial x}=\lim _{\epsilon \rightarrow 0}\left(\frac{f\left(x_{0}+\epsilon\right)-f\left(x_{0}\right)}{\epsilon}\right)
$$

Now this is linear and shift invariant.
Therefore, in discrete domain, it will be represented as a convolution

Differentiation and convolution

Recall the definition of derivative

$$
\frac{\partial f\left(x_{0}\right)}{\partial x}=\lim _{\epsilon \rightarrow 0}\left(\frac{f\left(x_{0}+\epsilon\right)-f\left(x_{0}\right)}{\epsilon}\right)
$$

Now this is linear and shift invariant.
Therefore, in discrete domain, it will be represented as a convolution

We could approximate this as

$$
\frac{\partial f\left(x_{n}\right)}{\partial x} \approx \frac{f\left(x_{n+1}\right)-f\left(x_{n}\right)}{\Delta x}
$$

which is obviously a convolution against the Kernel [$1-1$];

Finite Differences in 2D (discrete) domain

$$
\begin{array}{rc}
\frac{\partial f(x, y)}{\partial x}=\lim _{\varepsilon \rightarrow 0}\left(\frac{f(x+\varepsilon, y)-f(x, y)}{\varepsilon}\right) & \text { Horizontal } \\
\frac{\partial f(x, y)}{\partial y}=\lim _{\varepsilon \rightarrow 0}\left(\frac{f(x, y+\varepsilon)-f(x, y)}{\varepsilon}\right) & {\left[\begin{array}{ll}
1 & -1
\end{array}\right]} \\
\frac{\partial f\left(x_{n}, y_{m}\right)}{\partial x} \approx \frac{f\left(x_{n+1}, y_{m}\right)-f\left(x_{n}, y_{m}\right)}{\Delta x} & \text { Vertical } \\
\frac{\partial f\left(x_{n}, y_{m}\right)}{\partial y} \approx \frac{f\left(x_{n}, y_{m+1}\right)-f\left(x_{n}, y_{m}\right)}{\Delta y} & {\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{array}
$$

Discrete Approximation

Think of an image as a 2d, real-valued function

A 1D Example

Take a line on a grayscale image

A 1D Example (II)

Filter the image values by a convolution against the filter [1-1]

Derivatives

Derivatives are used to highlight intensity discontinuities in an image and to deemphasize regions with slowly varying intensity levels

Differentiating Filters

The derivatives can be also computed using centered filters:

$$
f_{x}(x)=f(x-1)-f(x+1)
$$

Such that the horizontal derivative is:

$$
\begin{array}{|l|l|l|}
f_{x}=f \otimes & 1 & 0 \\
\hline
\end{array}
$$

While the vertical derivative is:

$$
f_{y}=f \otimes \begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline
\end{array}
$$

Classical Operators: Prewitt

Horizontal derivative

$$
\begin{aligned}
s=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned} \quad d x=\left[\begin{array}{ll}
1 & -1
\end{array}\right] \quad h_{x}=s \circledast d x=\left[\begin{array}{lll}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right]
$$

Vertical derivative

$$
s=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad d y=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad h_{y}=s \circledast d y=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right]
$$

Classical Operators: Sobel

Horizontal derivative
 Smooth Differentiate

Vertical derivative

$$
s=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right] \quad d y=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad h_{y}=s \circledast d y=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}\right]
$$

Another famous test image - cameraman

Horizontal Derivatives using Sobel

$$
\nabla I_{x}=\left(I \circledast d_{x}\right)
$$

$$
\nabla I(r, c)=\left[\begin{array}{l}
\nabla I_{x}(r, c) \\
\nabla I_{y}(r, c)
\end{array}\right]
$$

Vertical Derivatives using Sobel

$$
\begin{gathered}
\nabla I_{y}=\left(I \circledast d_{y}\right) \\
d_{y}=d_{x}^{\prime}
\end{gathered}
$$

$$
\nabla I(r, c)=\left[\begin{array}{l}
\nabla I_{x}(r, c) \\
\nabla I_{y}(r, c)
\end{array}\right]
$$

Gradient Magnitude

$$
\begin{aligned}
& \|\nabla I\|=\sqrt{\left(I \circledast d_{x}\right)^{2}+\left(I \circledast d_{y}\right)^{2}} \\
& \nabla I(r, c)=\left[\begin{array}{l}
\nabla I_{x}(r, c) \\
\nabla I_{y}(r, c)
\end{array}\right]
\end{aligned}
$$

The Gradient Orientation

Like for continuous function, the gradient in each pixel points at the steepest growth/decrease direction.

$$
\angle \nabla I(r, c)=\operatorname{atand}\left(\frac{\nabla I_{y}(r, c)}{\nabla I_{x}(r, c)}\right)=\operatorname{atand}\left(\frac{\left(I \circledast d_{y}\right)(r, c)}{\left(I \circledast d_{x}\right)(r, c)}\right)
$$

The gradient norm indicates the strength of the intensity variation

Let's switch to Matlab.....

Think of an image as a 2d, real-valued function

The Image Gradient

Image Gradient is the gradient of a real-valued 2D function

$$
\nabla I(r, c)=\left[\begin{array}{ll}
I \circledast & d_{x} \\
I \circledast & d_{y}
\end{array}\right](r, c)
$$

where principal derivatives are computed through convolution against the derivative filters (e.g. Prewitt)

$$
d x=\left[\begin{array}{lll}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right], \quad d y=d x^{\prime}
$$

Image gradient behaves like the gradient of a function:
$|\nabla I(r, c)|$ is large where there are large variations
$\angle \nabla I(r, c)$ is the direction of the steepest variation

Think of an image as a 2d, real-valued function

Local spatial transformations are defined over neighborhood like this

Think of an image as a 2d, real-valued function

What about the gradient in this neighborhood?

Think of an image as a 2d, real-valued function

What about the gradient in this neighborhood?

Think of an image as a 2d, real-valued function

Higher Order Derivatives

Derivatives

Derivatives are used to highlight intensity discontinuities in an image and to deemphasize regions with slowly varying intensity levels

Second Order Derivatives

The Laplacian of the second order derivative is defined as

$$
\nabla^{2} I=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

where

$$
\begin{aligned}
& \frac{\partial^{2} I}{\partial x^{2}}=I(x+1, y)+I(x-1, y)-2 I(x, y) \\
& \frac{\partial^{2} I}{\partial y^{2}}=I(x, y-1)+I(x, y+1)-2 I(x, y), \text { thus } \\
& \nabla^{2} I=I(x+1, y)+I(x-1, y)+I(x, y-1)+I(x, y+1)-4 I(x, y)
\end{aligned}
$$

It's a linear operator \rightarrow it can be implemented as a convolution
TODO: prove that the second order derivatve is like this

Filter for Digital Laplacian

The Laplacian of the second order derivative is defined as

$$
\nabla^{2} I=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

0	1	0
1	-4	1
0	1	0
Standard definition, inviariant to 90° rotation		

1	1	1
1	-8	1
1	1	1

Alternative
definition, inviariant
to 45° rotation

The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other discontinuities, all superimposed on a dark, featureless background.

The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other discontinuities, all superimposed on a dark, featureless background.

The Laplacian: Image Sharpening

Background features can be "recovered" simply by adding the Laplacian image to the original (provided suitable rescaling)

The Laplacian: Image Sharpening

Background features can be "recovered" simply by adding the Laplacian image to the original (provided suitable rescaling)

Edges in Images

Edge Detection in Images

Goal: Automatically find the contour of objects in a scene.
What For: Edges are significant for scene understanding, enhancement compression...

Typically the edge mask is «flipped», 1 at edges and 0 elsewherkeer, uem maputo, Boracchi

Edges in Images

Depth
discontinuities

Edges in Images

Shadows

Edges in Images

Discontinuities in the surface color, Color changes

Edges in Images

Discontinuities in the surface normal

What is an Edge

Lets define an edge to be a discontinuity in image intensity function.

Several Models

- Step Edge
- Ramp Edge
- Roof Edge
- Spike Edge

They can be thus detected as discontinuities
of image
Derivatives

Edge Detection

Gradient Magnitude and edge detectors

Gradient Magnitute is not a binary image We can see edges but we cannot identify them, yet

$$
\|\nabla I\|=\sqrt{\left(I \circledast d_{x}\right)^{2}+\left(I \circledast d_{y}\right)^{2}}
$$

Detecting Edges in Image

Sobel Edge Detector

Canny Edge Detector Criteria

Good Detection: The optimal detector must minimize the probability of false positives as well as false negatives.

Good Localization: The edges detected must be as close as possible to the true edges.

Single Response Constraint: The detector must return one point only for each edge point. similar to good detection but requires an ad-hoc formulation to get rid of multiple responses to a single edge

Canny Edge Detector

It is characterized by 3 important steps

- Convolution with smoothing Gaussian filter before computing image derivatives
- Non-maximum Suppression
- Hysteresis Thresholding

Canny Edge Detector

Smooth by Gaussian (smoothing regulated by σ)

$$
S=G_{\sigma} * I \quad G_{\sigma}=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

Compute x and y derivatives

$$
\Delta S=\left[\begin{array}{ll}
\frac{\partial}{\partial x} S & \frac{\partial}{\partial y} S
\end{array}\right]^{T}=\left[\begin{array}{ll}
S_{x} & S_{y}
\end{array}\right]^{T}
$$

Compute gradient magnitude and orientation

$$
|\Delta S|=\sqrt{S_{x}^{2}+S_{y}^{2}} \quad \theta=\tan ^{-1} \frac{S_{y}}{S_{x}}
$$

Canny Edge Operator (derivatives)

$$
\begin{aligned}
& \Delta S=\Delta\left(G_{\sigma} * I\right)=\Delta G_{\sigma} * I \\
& \Delta G_{\sigma}=\left[\begin{array}{ll}
\frac{\partial G_{\sigma}}{\partial x} & \frac{\partial G_{\sigma}}{\partial y}
\end{array}\right]^{T} \\
& \Delta S=\left[\begin{array}{ll}
\frac{\partial G_{\sigma}}{\partial x} * I & \frac{\partial G_{\sigma}}{\partial y} * I
\end{array}\right]^{T}
\end{aligned}
$$

Convolution is associative

$I \otimes(g \otimes d x)$

$$
\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]=
$$

x-derivative
2D-Gaussian

Gaussian Derivative Filters

The amount of smoothing is regulated by a parameter σ

x-direction

Canny Edge Detector

Canny Edge Detector

$$
\begin{gathered}
|\Delta S|=\sqrt{S_{x}^{2}+S_{y}^{2}} \\
\text { Gradient Magnitude }
\end{gathered}
$$

I

Non-Maximum Suppression: The Idea

We wish to determine the points along the curve where the gradient magnitude is largest.
Non-maximum suppression: we look for a maximum along a slice orthogonal to the curve. These points form a 1D signal.

Original Image

Gradient Magnitude (after thresholding)

Segment orthogonal

Non-Maximum Suppression

Non-Maximum Suppression: The Idea

There are two issues:
i. which slice to select to extract the maximum?
ii. once an edge pixel has been found, which pixel to test next?

Original Image

Gradient Magnitude (after thresholding)

Segment orthogonal

Non-Maximum Suppression - Idea (II)

In each pixel, the gradient indicates the direction of the steepest variation: thus, the gradient is orthogonal to the edge direction (no variation along the edge). We have to consider pixels on a segment following the gradient direction

The intensity profile along the segment. We can easily identify the location of the maximum.

Non-Maximum Suppression - Threshold

Suppress the pixels in 'Gradient Magnitude Image' which are not local maximum

$$
M(x, y)=\left\{\begin{array}{cc}
|\Delta S|(x, y) & \text { if }|\Delta S|(x, y)>|\Delta S|\left(x^{\prime}, y^{\prime}\right) \\
0 & \&|\Delta S|(x, y)>|\Delta S|\left(x^{\prime \prime}, y^{\prime \prime}\right) \\
\text { otherwise }
\end{array}\right.
$$

$\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ are the neighbors of (x, y) in $|\Delta S|$

These have to be taken on a line along the gradient direction in (x, y)

Non-Maximum Suppression: Quantize Gradient Directions

In practice the gradient directions are quantized according to 4 main directions, each covering 45° (orientation is not considered)

- Thus, only diagonal, horizontal, vertical line segments are considered We consider 4 quantized directions $0,1,2,3$

$$
\theta\left(\boldsymbol{x}_{\mathbf{0}}\right)=\operatorname{atan}\left(\frac{\partial / \partial y I\left(x_{\mathbf{0}}\right)}{\partial / \partial x I\left(\boldsymbol{x}_{\mathbf{0}}\right)}\right)
$$

Orientation is irrelevant since this is meant for segment extraction

Tracking the edge direction

The direction orthogonal to the gradient follows the edge

Once a local maxima is found, we consider the direction orthogonal to the gradient in that pixel,

The direction is quantized as for extracting the 1D segment for nonmaximum suppression

We move one step in the quantized direction to determine another point where to extract 1D segments

Tracking the edge direction

The direction orthogonal to the gradient follows the edge

Once a local maxima is found, we consider the direction orthogonal to the gradient in that pixel,

The direction is quantized as for extracting the 1D segment for nonmaximum suppression

We move one step in the quantized direction to determine another point where to extract 1D segments

Non-Maximum Suppression

$$
|\Delta S|=\sqrt{S_{x}^{2}+S_{y}^{2}}
$$

Results from
nonmaximum
suppression
$M \geq$ Threshold $=25$

$$
M \geq \text { Threshold }=25
$$

M

Hysteresis Thresholding

Use of two different threshold High and Low for

- For new edge starting point
- For continuing edges

In such a way the edges continuity is preserved

Hysteresis Thresholding

If the gradient at a pixel is above "High' threshold,

- declare it an 'edge pixel'.

If the gradient at a pixel is below 'Low' threshold

- declare it a 'non-edge-pixel'.

If the gradient at a pixel is between 'Low' and 'High' thresholds

- then declare it an 'edge pixel' if and only if can be directly connected to an 'edge pixel' or connected via pixels between 'Low' and ' High'.

Hysteresis Thresholding

M

$M \geq$ Threshold $=25$

Hysteresis Thresholding
$M \geq$ Threshold $=25$

Hysteresis Thresholding

$$
\begin{aligned}
& \text { High }=35 \\
& \text { Low }=15
\end{aligned}
$$

Canny Edge Detection

Canny Edge Detection

Canny Edge Detection - changing hysteresis thresholds

Threshold: [Low, High], Sigma

Canny Edge Detection - changing hysteresis thresholds

Decreasing the low threshold extends the length of existing edges

Canny Edge Detection - changing hysteresis thresholds

Reference thresholds

Canny Edge Detection - changing hysteresis thresholds

Canny Edge Detection - changing hysteresis thresholds

Reference thresholds

Canny Edge Detection - changing hysteresis thresholds

Increasing the high threshold reduces the number of edges

Canny Edge Detection - changing the smoothing

Increasing sigma reduces the number of returned edges and makes these poorly localized

Line Detection: Hough Transform

Extracting Line Equations From Edges

Line Detection is Important

Line Detection: The problem

Finding all the lines passing through points in (a binary) image

Line Detection: The problem

Finding all the lines passing through points in (a binary) image

Finding lines means

- Having an analytical expression for each line
- Estimating its direction, length
- Thus, clustering points belonging to the same segment
boundary image

Line Detection: The problem

Brut-force attempt:
Given n points in a binary image, find subsets that lie on straight lines

- Compute all the lines passing through any pair of points
- Check subsets of points that belong / are close to these lines

Line Detection: The problem

Brut-force attempt:
This requires computing

- $\frac{n(n-1)}{2}$ straight lines
- $n\left(\frac{n(n-1)}{2}\right)$ comparisons
- Computationally prohibitive task in all but the most trivial applications $\sim n^{3}$

Hough Transform

Identify lines in the "parameter space" i.e. in the space of the parameters identifying lines (m, q). Let a straight line be:

$$
y=m x+q
$$

Now, for a given point $\left(x_{i}, y_{i}\right)$, the equation $q=-x_{i} m+y_{i}$ in the variables m, q denotes the star of lines passing through (x_{i}, y_{i})

Key intuition:

$$
q=-x_{i} m+y_{i}
$$

Can be also seen as the equation of a straight line in m, q in the parameter space

Line Intersections in the parameter space

Point space
Parameter space

Line Intersections in the parameter space

The two straight lines in the parameter space intersect in a point, corrisponding to a line passing to both $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Point space
Parameter space

Line Intersections in the parameter space

Intersections in the parameter space

```
y
```

- $\left(x_{2}, y_{2}\right)$

Idea:

- associate to each point a straight line in the parameter space
- Identify the intersections in the parameter space as the lines in the point space

\bar{m}, \bar{q} such that $y=\bar{m} x+\bar{q}$ passes through both $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Intersections in the parameter space

$y \uparrow$
 In practice:

- Consider a discretized parameter space
- Accumulates all the discrete straight lines
- Find the local maxima in the parameter space
x

\bar{m}, \bar{q} such that $y=\bar{m} x+\bar{q}$ passes through both $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Hough Transform

Identify lines in the "parameter space" i.e. in the space of the parameters identifying lines.

$$
q=-x_{i} m+y_{i}, \quad \forall\left(x_{i}, y_{i}\right)
$$

Core Idea:

- Discretize the parameter space where m, q live
- Accumulate the consensus in the parameter space by summing +1 at those bins where a straight line passess through
- Locate local maxima in the accumulator space

Major issue: m goes to infinity at vertical lines!

New Parametrization for Hough Transform

There is a more convenient way of expressing a strainght line for this purpose:

$$
x \cos (\theta)+y \sin (\theta)=\rho
$$

Where $\left\{(\rho, \theta), \rho \in[-L, L], \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}$

Same as before: a line in the image space is a point in parameter Hough space.

New parametrization of straight lines

Hough Transform

The Hough transform identifies through an optimized voting procedure the most represented lines

The voting procedure is performed in the «accumulator space» which is a grid in (ρ, θ)-domain, for all the possible values.

From the Accumulator space we then extract local maxima, namely pairs (ρ, θ) corresponding to lines passing through most of points

What is the maximum size of the domain?

Hough Transform: the algorithm

Initialize $H[d, \theta]=0$

for each edge point (x, y) in the image:
for θ in range(θ min, θ max $):$
pho $=x \cos (\theta)-y \sin (\theta)$
$H[d, \theta]+=1$
Find the value(s) of (d, θ) where $H[d, \theta]$ is maximum The detected line in the image is given by

H : accumulator array (votes)

θ $d=x \cos (\theta)-y \sin (\theta)$

Hough Transform

Input Image
Rendering of Transform Results

What if we take more edges?

Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any line intersecting the $H \times W$ image?

Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any line intersecting the $H \times W$ image?

It is the diagonal, so $\sqrt{H^{2}+W^{2}}$

Bin size in the accumulator: an important parameter

How large are the bins in the accumulator?

- Too small: many weak peaks due to noise
- Just right: one strong peak per line, despite noise
- Too large:
- poor accuracy in locating the line
- many votes from clutter might end up in the same bin

A solution:

- keep bin size small but also vote for neighbors in the accumulator (this is the same as "smoothing" the accumulator image)

Extension

From the edge detection algorithm, we know the direction of the gradient for each edge pixel
Remember how that edge direction is orthogonal to gradient direction We can make sure an edge pixel only votes for lines that have (almost) the direction of the edge!

- Reduces the computation time
- Reduces the number of useless votes (better visibility of maxima corresponding to real lines)

Hough Transform

The approach is not only limited to lines, but rather to any parametric model that we are able to fit

- Circles can be fit in a 3d accumulator space It is quite robust to noise

Hough Transform For Circles

slide Credits Alessandro Giusti, USI

Hugh Transform for Circles

1. Every edge point casts votes for all circles that are compatible with it
2. We choose circles that accumulated a lot of votes

How do we parametrize circles?

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Center ($x=a, y=b$) and radius $r: 3$ degrees of freedom
If we assume r known, the Hough space is 2D:

- a : x coordinate of circle center
- b : y coordinate of circle center

The role of (a, b) and (x, y) are interchangeable, thus: One point in image space maps to a circle in Hough space

Hough space for circles with known radius

Hough space for circles with unknown radius

One point in image space maps to...
a cone in Hough space

Hough space for circles with unknown radius

Image space

When the radius is zero $(a, b)=(x, y)$

If we know the gradient direction...

When increasing the radius, the center can only live in a line, thus the linear relation between a, b

Hough space

Hugh Transform for Circles

Initialize H accumulator to zeros
For every edge pixel (x,y):
For each possible radius value r :
For each possible gradient direction θ :
$a=x-r \cos (\theta) / / \operatorname{column}$
$b=y+r \sin (\theta) / /$ row
$H[a, b, r]+=1$

An example

Accumulator for radius equal to radius of a penny

Edges
Accumulator for radius=penny

An example

Accumulator for radius equal to radius of a quarter

Conclusions

Advantages

- All points are processed independently, so the algorithm can cope with occlusions and gaps
- Voting algorithms are robust to clutter, because points not corresponding to any model are unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Disadvantages

- Only suitable for models with few parameters
- Must filter out spurious peaks in hough accumulator
- Quantization of hough space is tricky

Image Segmentation (Unsupervised)

Image Segmentation

Goal: identify groups of pixel that "go together"
-Group together similar-looking pixel for efficiency
-Separate images into coherent objects

One way of looking at segmentation is clustering

Problem Formulation: Image Segmentation

Given an image $I \in \mathbb{R}^{R \times C \times 3}$, having as domain \mathcal{X}, the goal of image segmentation consists in estimating a partition $\left\{R_{i}\right\}$ such that

$$
\bigcup_{i} R_{i}=x
$$

and $R_{i} \cap R_{j}=\emptyset, \quad i \neq j$
There are two types of sementation:

- Unsupervised (what we address here)
- Supervised (or Semantic)

Unsupervised Segmentation

Segments R_{i} are

- typically connected
- contain pixels having similar intensities
- In practice, we associate to each set an identifier (or label) which has no pre-defined meaning.
Clustering is described by a function

$$
\delta: \mathcal{X} \rightarrow \mathbb{N}
$$

Mapping each pixel to the identifier of the associated region
Segments or «Superpixels» represent a more compact description of the entire image

Achanta, et al SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012

Semantic Segmentation

Assign to each pixel of an image $I \in \mathbb{R}^{R \times C \times 3}$:

- a label $\left\{l_{i}\right\}$ from a fixed set of categories

$$
\begin{aligned}
& \Lambda=\{\text { "wheel", "cars", ..., "castle", "baboon" }\}, \\
& I \rightarrow S \in \Lambda^{R \times C}
\end{aligned}
$$

where $S(x, y) \in \Lambda$ denotes the class associated to the pixel (x, y)

- segments contain pixels referring to the same object.
- This requires annotations and is typically carried out by neural networks
- Label set has a predefined meaning

Semantic Segmentation

Unsupervised Segmentation by Clustering

Image Segmentation as Clustering

The most straightforward approach to unsupervised Image Segmentation consists in clustering image pixels or image intensities

Clustering: grouping together similar data points and represent them with a single token.

Challenges:

- What makes to points/images/patches similar?
- How do we compute overall grouping from pairwise similarities?

Why clustering?

Summarizing data
Counting
Prediction
Segmentation

How to cluster?

1.Agglomerative clustering: start with each point at its own cluster and iteratively merge the clusters.
2.K-means clustering: Iteratively re-assign points to cluster
3.Mean shift: estimates modes of the probability distribution functions

Clustering: distance measures

Clustering is an unsupervised learning method. Given a series of items, the goal is to group them into clusters.

We need:
-A pairwise distance (or a similarity)
-(sometimes) the desired number of clusters.

Commonly used measures

Euclidean Distance

Cosine similarity

$d(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$

$$
s(\boldsymbol{x}, \boldsymbol{y})=\frac{\boldsymbol{x}^{\top} \boldsymbol{x}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}=\cos (\theta)
$$

A (trivial) case study

Input image

Here image pixels are very easy to gather in clusters according to their intensities.

Here the problem becomes more difficult and it is definitively challenging on natural images

A (trivial) case study: Intensities

Clustering algorithms

Here are a few clustering algorithms

- K-Means Clustering
- Mean-shift Clustering
- Agglomerative Clustering

K-Means Clustering

Undelying assumption: we know K, the number of centers
Goal: define a mapping $\delta: I \rightarrow \mathbb{N}$ those minimizing Sum of Squared Distance (SSD) between points belonging to the cluster R_{i} and the nearest cluster center c_{i}

$$
S S D=\sum_{R_{i}} \sum_{x \in R_{i}}\left\|x-c_{i}\right\|_{2}^{2}
$$

Being c_{i} the center of the cluster R_{i}.

The Goal of K-Means

Create clusters that minimize the variance in data, given the clusters.
But this is a "chicken and egg" problem
-We need centers to compute memberships
-We need memberships to compute center

The Goal of K-means, reformulatead

Define a mapping δ and the centroid of each cluster $\left\{c_{i}\right\}, i=1, \ldots, K$ such that

$$
\delta^{*},\left\{c_{i}\right\}^{*}=\underset{\delta,\left\{c_{i}\right\}}{\operatorname{argmin}} \sum_{j}^{N} \sum_{i}^{K} \delta\left(x_{j}, c_{i}\right)\left(x_{j}-c_{i}\right)^{2}
$$

Being

$$
\delta\left(x_{j}, c_{i}\right)=\left\{\begin{array}{rr}
1 & \text { if } x_{j} \in R_{i} \text { having center } c_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

The above optimization is difficult to solve, so we opt for a greedy solution that alternates between the optimization of δ and $\left\{c_{i}\right\}$

K-Means algorithm

1. Randomly Initialize the cluster centers $\left\{c_{k}\right\}(t=0)$
2. Assign each point x_{j} to the cluster R_{i} of the closest centroid. This corresponds to optimizing

$$
\delta^{*}=\underset{\delta}{\operatorname{argmin}} \sum_{j}^{N} \sum_{i}^{K} \delta\left(x_{j}, c_{i}\right)\left(x_{j}-c_{i}\right)^{2}
$$

3. Update cluster centers as the means of its points

$$
\left\{c_{i}\right\}^{*}=\underset{\left\{c_{i}\right\}}{\operatorname{argmin}} \sum_{j}^{N} \sum_{i}^{K} \delta\left(x_{j}, c_{i}\right)\left(x_{j}-c_{i}\right)^{2}
$$

4. Update $t+=1$ and go back to (2).

K-means Clustering Illustration

Summary: K-Means clustering

PROS

Finds cluster centers that minimize conditional variance -> good
representation
Simple, fast and easy to implement

CONS

Need to choose K

Sensitive to outliers
Prone to local minima
All clusters have the same parameters

The Choice of K

segmentation output K-means $K=2$

Average Intensities K = 2

Average Intensities K = 3 A

The Choice of K

segmentation output K-means $K=5$

Average Intensities K=5

Remarks

The average Intensity Image is obtained by associating to each region R_{i} the average intensity of pixels belonging to R_{i}

This can be seen as an adaptive form of color quantization
original image

Average Intensities K = 10

Clustering Inputs

Feature space

In our previous examples, we have been showing a 1-D feature space (intensity only).

But one can look at more various features!

$$
\boldsymbol{x}_{\boldsymbol{i}}=I(r, c) \in \mathbb{R}
$$

Colors

Instead of using only the intensities, we can use the colors of each pixel: this will lead to a 3-D feature space.

$$
\boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{l}
R(r, c) \\
G(r, c) \\
B(r, c)
\end{array}\right] \in \mathbb{R}^{3}
$$

Different color spaces can be used (XYZ, CIELUV, ...)

Still no notion of locality

Intensity+position

We can use both the intensity and the position to group pixel.
This will encode similarity and proximity

$$
\boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{c}
R(r, c) \\
G(r, c) \\
B(r, c) \\
r \\
c
\end{array}\right] \in \mathbb{R}^{5}
$$

Intensity+position

original image
segmentation output K-means $K=2$ coord: 1 W : 1

segmentation output K-means $K=10$ coord: 1 W: 1

What's wrong with that?

Intensity+position

We can use both the intensity and the position to group pixel.
This will encode similarity and proximity

$$
\boldsymbol{x}_{\boldsymbol{i}}=\left[\begin{array}{c}
R(r, c) \\
G(r, c) \\
B(r, c) \\
\alpha r \\
\alpha c
\end{array}\right] \in \mathbb{R}^{5}
$$

The pixel location r, c when expressed in pixel coordinate assume values that are way larger than the other components!

They dominate in the computation of the distance, that's why we get to Voronoi partitions

We need to compensate for this and either use coordinate relative to the image size, or scale these by a weight α

Intensity+position: 2 step procedure

segmentation output K-means $K=\mathbf{2 0}$ coord: $1 \mathrm{~W}: \mathbf{0 . 0 1}$

Use a first step quantization to remove bright background, then segment only the dark parts of the image.

Many others

Gradient (to encode shapes)
Filter bank responses (to encode textures following similar directions)
Any combination of these features!

Inizialization

K means can suffer of poor initialization
K-means++

- Choose K clusters at random
- Resample the position of other K centroids using probability proportional to $\left(x-c_{i}\right)^{2}$ being c_{i} the closest center
- Run k-means

Back to Clustering..

Clustering algorithms

Here are a few clustering algorithms

- K-Means Clustering
- Mean-shift Clustering
- Agglomerative Clustering

Mean-shift clustering

The algorithm:

1. Initialize random seeds and search windows W
2. Calculate center of gravity ("mean") of each W
3. Shift the search windows to their means
4. Repeat (2) and (3) until convergence.

In practice

- Build a tessellation of the space and run the procedure in parallel
- At the end, a cluster will contain all the points in the basin of attraction of a mode.

Slide by Y. Ukrainitz \& B. Sarel

Real Modality Analysis

Real Modality Analysis

Slide by Y. Ukrainitz \& B. Sarel

Mean-shift segmentation

1.Find features (e.g.,intensities, colors)
2.Initialize windows at individual pixel location
3.Perform mean shift for each windows
4.Merge windows that end up near the same "peak" (or mode)

Iteration: 12

Iteration: 4

Converged

Cluster points

To Summarize

Each pixel becomes a 5 d vector, having the spatial and chromatic (Luv) components

The algorithm is initialized in each point to be segmented

The label is the position of the point of convergence

Algorithm 1: Pseudo-code for the Mean shift filtering
Input $\quad: x_{n}=\left(x_{n}^{s}, x_{n}^{r}\right), n=1, \ldots, N$ 5-dimensional RGB points
Parameter: h_{s}, h_{r}
Data: $c_{i}=\left(c_{i}^{s}, c_{i}^{r}\right), i=1, \ldots, N 5$-dimensional $L^{*} u^{*} \mathrm{v}^{*}$ points
Data: $z_{i}=\left(z_{i}^{s}, z_{i}^{r}\right), i=1, \ldots, N 5$-dimensional filtered points
Output : $o_{n}=\left(o_{n}^{s}, o_{n}^{r}\right), n=1, \ldots, N 5$-dimensional RGB points
for $n=1, \ldots, N$ do

$$
c_{n}^{r}=\text { ConvertRGB2LUV }\left(x_{n}^{r}\right)
$$

for $i=1, \ldots, N$ do
initialize $j=1$ and $y_{i, 1}=c_{i}=\left(x_{i}^{s}, c_{i}^{r}\right)$ while not converged do
calculate $y_{i, j+1}$ according to $y_{i, j+1}=\frac{\sum_{i=1}^{n} c_{i} g\left(\left\|\frac{y_{i, j}-c_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\| y_{i, j}-c_{i}}{h}\right\|^{2}\right)}$, $y_{i, j+1} \in \mathbb{R}^{D}$ is a new position of the kernel window. n - the number of points in the spatial kernel centered on $y_{i, j}$

$$
y_{i, \text { conv }}=y_{i, j+1}
$$

$$
\text { assign } z_{i}=\left(x_{i}^{s}, y_{i, \text { conv }}^{r}\right)
$$

for $n=1, \ldots, N$ do
$o_{n}^{r}=$ ConvertLUV $2 R G B\left(z_{n}^{r}\right)$
Demirović, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.

MS Filtering!

Algorithm 1: Pseudo-code for the Mean shift filtering
Input $\quad: x_{n}=\left(x_{n}^{s}, x_{n}^{r}\right), n=1, \ldots, N 5$-dimensional RGB points
Parameter: h_{s}, h_{r}
Data: $c_{i}=\left(c_{i}^{s}, c_{i}^{r}\right), i=1, \ldots, N 5$-dimensional $\mathrm{L}^{*} \mathrm{u}^{*} \mathrm{v}^{*}$ points
Data: $z_{i}=\left(z_{i}^{s}, z_{i}^{r}\right), i=1, \ldots, N 5$-dimensional filtered points
Output $\quad: o_{n}=\left(o_{n}^{s}, o_{n}^{r}\right), n=1, \ldots, N 5$-dimensional RGB points
for $n=1, \ldots, N$ do

$$
c_{n}^{r}=\text { ConvertRGB2LUV }\left(x_{n}^{r}\right)
$$

for $i=1, \ldots, N$ do
initialize $j=1$ and $y_{i, 1}=c_{i}=\left(x_{i}^{s}, c_{i}^{r}\right)$ while not converged do
calculate $y_{i, j+1}$ according to $y_{i, j+1}=\frac{\sum_{i=1}^{n} c_{i} g\left(\left\|\frac{y_{i, j}-c_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{y_{i, j}-c_{i}}{h}\right\|^{2}\right)}$, $y_{i, j+1} \in \mathbb{R}^{D}$ is a new position of the kernel window. n - the number of points in the spatial kernel centered on $y_{i, j}$

To each point, we associate the destitination (it's filtering!)
The algorithm is initialized in each point to be segmented

$$
\mathrm{O}_{n}^{\prime}=\text { ConvertLUV } 2 R G B\left(z_{n}^{\prime},\right.
$$

Demirović, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.

Segmentation

```
Algorithm 2: Pseudo-code for the Mean shift segmentation
Input \(\quad: x_{n}=\left(x_{n}^{s}, x_{n}^{r}\right), n=1, \ldots, N 5\)-dimensional RGB points Parameter: \(h_{s}, h_{r}, M\)
Data: \(c_{i}=\left(c_{i}^{s}, c_{i}^{r}\right), i=1, \ldots, N 5\)-dimensional L***** points
Data: \(z_{i}=\left(z_{i}^{s}, z_{i}^{r}\right), i=1, \ldots, N 5\)-dimensional filtered points
Output \(\quad: o_{n}=\left(o_{n}^{s}, o_{n}^{r}\right), n=1, \ldots, N 5\)-dimensional RGB points
```

Run the mean shift filtering (Algorithm 1) and store all information about convergence points $z_{i}=\left(x_{i}^{s}, y_{i, \text { conv }}^{r}\right)$. for $i=1, \ldots, N$ do identify clusters $\left\{C_{p}\right\}_{p=1, \ldots, P}$ of convergence points by linking together all z_{i} which are closer than h_{s} in the spatial domain and h_{r} in the range domain
for $i=1, \ldots, N$ do assign label $L_{i}=\left\{p \mid z_{i} \in C_{p}\right\}$
eliminate spatial regions containing less than M pixels
for $i=1, \ldots, N$ do

$$
\left.o_{n}=\text { ConvertLUV2RGB(} z_{i}\right)
$$

Summary: Mean-Shift clustering

PROS

- Model-free (no assumption on data clustes)
- Just a single parameter (windows size h)
- Find a variable number of modes
- Robust to outliers

CONS

- Window-size selection is nontrivial
- Output depends on h
- Computationally expensive
- Does not scale well with dimension of feature space

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Problem: Computational Complexity should be repeated and

Speedups: Basin of Attraction

The basin of attraction of a mode, i.e. data points visited by all the mean shift procedures converging to that mode, automatically separate

1. Assign all points within radius r of end point to the mode.

Speedups

Clustering algorithms

Here are a few clustering algorithms

- K-Means Clustering
- Mean-shift Clustering
- Agglomerative Clustering

Agglomerative Clustering

1.Every point is its own cluster
2.Find most similar pair of clusters
3.Merge it into a "parent" cluster

Unfortunately, we know how to define distances between points, but not distances between group of points.
4.Repeat (2) until only one cluster is left.

Distance between clusters

- Single linkage (minimum distance)
- Complete linkage (maximum distance)
- Average distance
- Many others...

How many clusters?
Threshold based on
Number of clusters

Summary: agglomerative clustering

PROS

- Simple to implement
- Clusters have adaptive shapes
- Hierarchy of clusters
- No need to specify the number of clusters in advance

CONS

- May lead to unbalanced clusters
- We need to arbitrarily select a cutpoint or a threshold
- Prone to local minima
- Does not scale well ($0\left(n^{3}\right)$)

A Few Relevant Segmentation Algorithms

Watershed

Idea: find segments as "catchment basins" or "watershed ridge lines" in an image by treating it as a surface where light pixels represent high elevations and dark pixels represent low elevations.

The basic idea consisted of placing a water source in each regional minimum in the relief, to flood the entire relief from sources, and build barriers when different water sources meet.

The resulting set of barriers constitutes a watershed by flooding. A number of improvements, collectively called Priority-Flood, have since been made to this algorithm. [Wikipedia, May 2022]

Watershed

The watershed transform can be used to segment contiguous regions of interest into distinct objects.

However, this rather simplistic intuition cannot straightforwardly be used over images, it requires some preprocessing to let this work.

It has the major advantage of operating without having as input the number of clusters

Meyer, Fernand, "Topographic distance and watershed lines," Signal Processing , Vol. 38, July 1994, pp. 113-125.
Serge Beucher and Christian Lantuéj workshop on image processing, real-time edge and motion detection (1979). http://cmm.ensmp.fr/~beucher/publi/watershed.pdf

Watershed illustrated

Watershed illustrated

Watershed Illustrated

Watershed is very sensitive

original image

Watershed is very sensitive

original image

Erode + WaterShed

Some pre-processing can mitigate these problems, like eroson to make dark and flat regions larger and smoother

Watershed is very sensitive

... also making can improve the performance. Note that watershed has operated correctly in the top left cells who were next to each other

SuperPixels

Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid.
Superpixels (i.e. connected regions R_{i}) should

- Adhere to image boundaries
- Be fast to compute, memory efficient, simple to use

SLIC: Simple Linear Iterative Clustering

A simple, yet effective and efficient superpixel algorithm.

- Based on k-means, requires K
- Operates on intensity+location features, on Lab color spae

$$
x_{i}=\left[L\left(r_{i}, c_{i}\right), a\left(r_{i}, c_{i}\right), b\left(r_{i}, c_{i}\right), r_{i}, c_{i}\right]^{\prime}
$$

- Centers initialized over a regular grid of step $\sqrt{N / k}$, to promote superpixels of same area (locations are adjusted to avoid edges)
- Pixels are associated to clusters belonging to a search neighborhood
- Standard centroid update
- Post-processing to enforce connectivity, re-assigning disjoint pixels to the closest cluster

