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https://boracchi.faculty.polimi.it/seminars.html
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Colab Folder

In this folder you will find, regularly updated 
notebooks

https://drive.google.com/drive/folders/1JXY-
31r6MYzW53xlxc4hERx3IwZawQ5k?usp=sharing

Notebooks require you to “fill in” some codes 
or to extend codes we illustrate during 
lectures to new data/new challenges

https://drive.google.com/drive/folders/1JXY-31r6MYzW53xlxc4hERx3IwZawQ5k?usp=sharing
https://drive.google.com/drive/folders/1JXY-31r6MYzW53xlxc4hERx3IwZawQ5k?usp=sharing
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Local Spatial Transformations:
Transformations taking as input a set of 

intensities and returning a single intensity
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Local (Spatial) Transformation
Operate locally “around“ the neighborhood 𝑈𝑈 of a given pixel.

In general, they can be written as
𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝑇𝑇𝑈𝑈 𝐼𝐼 (𝑟𝑟, 𝑐𝑐)

Where

• 𝐼𝐼 is the input image to be transformed

• 𝐺𝐺 is the output

• 𝑈𝑈 is a neighbourhood, identifies a region of the image that will concur in the 
output definition

• 𝑇𝑇𝑈𝑈: ℝ3 → ℝ3 or 𝑇𝑇𝑈𝑈: ℝ3 → ℝ is a function 

The output at pixel (𝑟𝑟, 𝑐𝑐) i.e., 𝑇𝑇𝑈𝑈 𝐼𝐼 (𝑟𝑟, 𝑐𝑐) is defined by all the intensity values:
𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈
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Local (Spatial) Filters

The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼

𝑈𝑈

Input Image

𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)

Output Image

𝑇𝑇𝑈𝑈 𝐼𝐼 (𝑟𝑟, 𝑐𝑐)
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Local (Spatial) Filters

The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼

𝑈𝑈

Input Image

𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)

Output Image

𝑇𝑇𝑈𝑈
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Local (Spatial) Filters

The dashed square represents 𝐼𝐼 𝑢𝑢, 𝑣𝑣 , 𝑢𝑢 − 𝑟𝑟, 𝑣𝑣 − 𝑐𝑐 ∈ 𝑈𝑈

And (𝑢𝑢, 𝑣𝑣) has to be interpreted as a "displacement vector" w.r.t. the neighborhood
center (𝑟𝑟, 𝑐𝑐), e.g., 𝑢𝑢, 𝑣𝑣 ∈ { 1,−1 , 1,0 , (1,−1) … }

𝐼𝐼 𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)𝑇𝑇𝑈𝑈(𝑟𝑟, 𝑐𝑐)

𝑈𝑈
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Local (Spatial) Filters

• The location of the output does not change

• Space invariant transformations are repeated for each pixel (don’t depend on the value of 𝑟𝑟, 𝑐𝑐)
• 𝑇𝑇 can be either linear or nonlinear

(𝑟𝑟, 𝑐𝑐)

𝐼𝐼

𝑈𝑈

𝑇𝑇𝑈𝑈[𝐼𝐼]

(𝑟𝑟, 𝑐𝑐)𝑇𝑇𝑈𝑈

(𝑟𝑟′, 𝑐𝑐′) (𝑟𝑟′, 𝑐𝑐′)𝑇𝑇𝑈𝑈
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Local Linear Filters

Linear Transformation: Linearity implies that the output 𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 is a 
linear combination of the pixels in 𝑈𝑈:

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

Considering some weights {𝑤𝑤𝑖𝑖}

𝑟𝑟

𝑐𝑐

We can consider weights as an 
image, or a filter ℎ

The filter ℎ entirely defines this
operation ℎ
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Local Linear Filters

Linear Transformation: the filter weights can be assoicated to a matrix 𝒘𝒘

𝑇𝑇 𝐼𝐼 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢,𝑣𝑣 ∈𝑈𝑈

𝑤𝑤𝑖𝑖(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−11) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

This operation is
repeated for each
pixel in the input 

image

𝒘𝒘

𝑇𝑇 𝐼𝐼

𝐼𝐼 𝐼𝐼

𝐼𝐼

𝐼𝐼𝐼𝐼

𝐼𝐼
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Correlation

The correlation among a filter 𝑤𝑤 = {𝑤𝑤𝑖𝑖𝑖𝑖} and an image is defined as

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

where the filter ℎ is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1) and contains the weights 
defined before as 𝑤𝑤. The filter 𝑤𝑤 is also sometimes called “kernel”

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

∗

Point-wise
product Sum

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐)

𝑤𝑤

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)

𝑤𝑤 0,1 ∗ 𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)
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Correlation

The correlation among a filter 𝑤𝑤 = {𝑤𝑤𝑖𝑖𝑖𝑖} and an image is defined as

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

∗

Point-wise
product Sum

𝐼𝐼 ⊗ 𝑤𝑤 (𝑟𝑟, 𝑐𝑐)

𝑤𝑤

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)

𝑤𝑤 0,1 ∗ 𝐼𝐼(𝑟𝑟 + 0 𝑐𝑐 + 1)

np.sum(np.multiply(region,w))
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Correlation
acc = 0;

for i in np.arange(template_height)

for j in np.aragne(template_width)

acc = acc + image[y + i, x + j]*template[i,j]

image[x+ template_height//2, y + template_width//2] = acc x

y

x+i

y+j
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Correlation for BINARY target matching

=

Easy to understand with binary images

Target used as a filter

⊗

𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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⊗
𝐼𝐼 𝑤𝑤
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The maximum 
is here

⊗
𝐼𝐼 𝑤𝑤
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However…

* =

Each point in a white area is
as big as the template 
achieve the maxium value
(togheter with the perfect
match)
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However…

* =

Each point in a white area is
as big as the template 
achieve the maxium value
(togheter with the perfect
match)

Normalization is needed when using
correlation for template matching!
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Normalized (Zero) Cross Correlation

A very straightforward approach to template matching

Normalized Cross Correlation 𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴,𝐵𝐵 ∈ [−1, 1] is defined as

𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴,𝐵𝐵 =
𝑁𝑁 𝐴𝐴,𝐵𝐵

𝑁𝑁 𝐴𝐴,𝐴𝐴 𝑁𝑁(𝐵𝐵,𝐵𝐵)
where

𝑁𝑁 𝐴𝐴,𝐵𝐵 = �
𝑊𝑊

𝐴𝐴 𝑥𝑥,𝑦𝑦 − 𝐴̅𝐴 𝐵𝐵 𝑥𝑥,𝑦𝑦 − �𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

and 𝐴̅𝐴 represents the average image value on patch 𝐴𝐴, similarly �𝐵𝐵. 𝑊𝑊 is 
the support of 𝐴𝐴 or 𝐵𝐵.
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Normalized (Zero) Cross Correlation
A = region.flatten()

mean_A = np.mean(B)

A = A - mean_A

B = template.flatten()

mean_B = np.mean(B)

B = B - mean_B

correlation = np.dot(A,B) /np.sqrt( np.dot(A,A) * np.dot(B,B) )

𝐴𝐴 − 𝐴̅𝐴 𝐵𝐵 − �𝐵𝐵

𝜃𝜃

cos 𝜃𝜃
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Do it yourself on Colab!

Find in the shared folder 
and try to perform template 
matching, using correlation.

Image: “te.jpg” Template: “template.jpg”
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Do it yourself!

Find in the shared folder 
and try to perform template 
matching, using correlation.
Does it work? 
How can you resolve the 
problem? 

Image: “te.jpg” Template: “template.jpg”
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Normalized Cross Correlation
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Normalized Cross Correlation

Remarks:
• NCC yields a measure in the range [-1,1] , 

• NCC is invariant to changes in the average intensity.

• While this seems quite computationally demanding, there exists fast 
implementations where local averages are computed by running sums (integral 
image)

Where in our case,
• 𝐴𝐴 is the region in the image, 
• 𝐵𝐵 is the filter
and they are comparable in size
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Integral Image

The integral image 𝑆𝑆 is defined from an image 𝐼𝐼 as follows

𝑆𝑆 𝑥𝑥,𝑦𝑦 = �
𝑟𝑟≤𝑦𝑦,𝑐𝑐≤𝑥𝑥

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

𝑦𝑦

𝑥𝑥

𝑆𝑆 𝑥𝑥,𝑦𝑦

�
𝑟𝑟≤𝑦𝑦,𝑐𝑐≤𝑥𝑥

𝐼𝐼(𝑟𝑟, 𝑐𝑐)
𝑦𝑦

𝑥𝑥𝐼𝐼 𝑆𝑆
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Using the Integral Image

The integral image allows fast computation of the sum (average) of any
rectangular region in the image

�
𝑦𝑦1≤𝑟𝑟≤𝑦𝑦2,
𝑥𝑥1≤𝑐𝑐≤𝑥𝑥2

𝐼𝐼(𝑟𝑟, 𝑐𝑐) = 𝑆𝑆 𝑥𝑥2,𝑦𝑦2 − 𝑆𝑆 𝑥𝑥2,𝑦𝑦1 − 𝑆𝑆 𝑥𝑥1,𝑦𝑦2 + 𝑆𝑆(𝑥𝑥1,𝑦𝑦1)

𝑦𝑦2

𝑥𝑥2

�
𝑦𝑦1≤𝑟𝑟≤𝑦𝑦2,
𝑥𝑥1≤𝑐𝑐≤𝑥𝑥2

𝐼𝐼(𝑟𝑟, 𝑐𝑐)

𝑥𝑥1

𝑦𝑦1

𝑦𝑦2

𝑥𝑥2𝑥𝑥1

𝑦𝑦1

𝑆𝑆 𝑥𝑥2,𝑦𝑦2

𝑆𝑆 𝑥𝑥2,𝑦𝑦1

𝑆𝑆 𝑥𝑥1,𝑦𝑦2

𝑆𝑆(𝑥𝑥1,𝑦𝑦1)
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Disparity Map Estimation

𝐼𝐼2𝐼𝐼1

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Disparity Map Estimation

There are different measures to compare a patch in 𝐼𝐼1 with all the candidate matches in 𝐼𝐼2

𝐼𝐼2𝐼𝐼1

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale


IACV, UEM Maputo, Boracchi

Disparity Map Estimation

There are different measures to compare a patch in 𝐼𝐼1 with all the candidate matches in 𝐼𝐼2

𝐼𝐼2𝐼𝐼1

𝑁𝑁𝑁𝑁𝑁𝑁 𝐴𝐴,𝐵𝐵 =
𝑁𝑁 𝐴𝐴,𝐵𝐵

𝑁𝑁 𝐴𝐴,𝐴𝐴 𝑁𝑁(𝐵𝐵,𝐵𝐵)

Or sum of square differences

𝑆𝑆𝑆𝑆𝐷𝐷 𝐴𝐴,𝐵𝐵 = �
𝑖𝑖=1

𝑁𝑁

𝐴𝐴𝑖𝑖 − 𝐵𝐵𝑖𝑖 2

Andrea Fusiello, Elaborazione delle Immagini: Visione Computazionale, http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale

http://www.diegm.uniud.it/fusiello/index.php/Visione_Computazionale
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Stereo Pairs http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Stereo Pairs http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Stereo Pairs http://vision.middlebury.edu/stereo/data/

http://vision.middlebury.edu/stereo/data/
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Convolution
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Correlation and Convolution

The correlation among a filter 𝒘𝒘 and an image is defined as

𝐼𝐼 ⊗ 𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣)

where the filter 𝒘𝒘 is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)
The convolution among a filter 𝒘𝒘 and an image is defined as

𝐼𝐼 ⊛ 𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣)

where the filter 𝒘𝒘 is of size (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

There is just a swap in the filter before computing correlation!



IACV, UEM Maputo, Boracchi

Convolution – and filter flip
Let 𝐼𝐼,𝒘𝒘 be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

w1 w2 w3

w4 w5 w6

w7 w8 w9

𝑤𝑤 =

𝐿𝐿 𝐿𝐿
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Convolution – and filter flip
Let 𝐼𝐼,𝒘𝒘 be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛𝒘𝒘 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

In this particular case 𝐿𝐿 = 1 and both the image and 
the filter have size 3 × 3

The convolution is evaluated at 𝑟𝑟, 𝑐𝑐 = (0,0)

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

𝑤𝑤 =
flipY −
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Convolution – and filter flip

Let 𝐼𝐼,ℎ be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝑤𝑤 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

I1 I2 I3

I4 I5 I6

I7 I8 I9

⋅*

w9I1 w8I2 w7I3

w6I4 w5I5 w4I6

w3I7 w2I8 w1I9

Point-wise
product

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

𝑤𝑤 =
flipY −

w9 w8 w7

w6 w5 w4

w3 w2 w1
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Convolution 
Let 𝐼𝐼,𝒘𝒘 be two discrete 2D signals of (2𝐿𝐿 + 1) × (2𝐿𝐿 + 1)

𝐺𝐺 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝒘𝒘 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

I1 I2 I3

I4 I5 I6

I7 I8 I9

⋅*

w9I1 w8I2 w7I3

w6I4 w5I5 w4I6

w3I7 w2I8 w1I9

Point-wise
product

w7 w8 w9

w4 w5 w6

w1 w2 w3

w9 w8 w7

w6 w5 w4

w3 w2 w1

w1 w2 w3

w4 w5 w6

w7 w8 w9

flipX −

𝑤𝑤 =
flipY −

w9 w8 w7

w6 w5 w4

w3 w2 w1

𝐺𝐺(𝑟𝑟, 𝑐𝑐) = 𝑤𝑤9𝐼𝐼1 + 𝑤𝑤8𝐼𝐼2 
+ 𝑤𝑤7𝐼𝐼3 

+ 𝑤𝑤6𝐼𝐼4 
+ 𝑤𝑤5𝐼𝐼5 

+ 𝑤𝑤5𝐼𝐼6 
+ 𝑤𝑤3𝐼𝐼7 

+ 𝑤𝑤2𝐼𝐼8 
+ 𝑤𝑤1𝐼𝐼9

Sum
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Convolution and filter flip
𝐼𝐼 ⊛ 𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = �

𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∗ 𝐼𝐼(𝑟𝑟 − 𝑢𝑢, 𝑐𝑐 − 𝑣𝑣) 𝐼𝐼 ⊛ 𝒘𝒘 𝑟𝑟, 𝑐𝑐 = �
𝑢𝑢=−𝐿𝐿

𝐿𝐿

�
𝑣𝑣=−𝐿𝐿

𝐿𝐿

𝐼𝐼 𝑟𝑟 + 𝑢𝑢, 𝑐𝑐 + 𝑣𝑣 𝑤𝑤 −𝑢𝑢,−𝑣𝑣

𝑤𝑤(1,1) 𝑤𝑤(1,0) 𝑤𝑤(1,−1)

𝑤𝑤(0,1) 𝑤𝑤(0,0) 𝑤𝑤(0,−1)

𝑤𝑤(−1,1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,−1)

𝑤𝑤(−1,−1) 𝑤𝑤(−1,0) 𝑤𝑤(−1,1)

𝑤𝑤(0,−1) 𝑤𝑤(0,0) 𝑤𝑤(0,1)

𝑤𝑤(1,−1) 𝑤𝑤(1,0) 𝑤𝑤(1,1)

I(1,1) 𝐼𝐼(1,0) I(1,−1)

I(0,1) I(0,0) I(0,−1)

I(−1,1) I(−1,0) I(−1,−1)

I(−1,−1) 𝐼𝐼(−1,0) I(−1,1)

I(0,−1) I(0,0) I(0,1)

I(1,−1) I(1,0) I(1,1)

Flipping the image and applying the filter = Applying the flipped filter

… + 𝑤𝑤 −1,−1 𝐼𝐼 1,1 + ⋯+ 𝑤𝑤 1,0 𝐼𝐼 −1,0 + ⋯ … + 𝑤𝑤 1,0 𝐼𝐼 −1,0 + ⋯+ 𝑤𝑤 −1,−1 𝐼𝐼 1,1 + ⋯

Flipped image Flipped filter
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Question

The filter (a.k.a. the kernel) yields the coefficients used to compute the 
linear combination of the input to obtain the output

1 3 0

2 10 2

4 1 1

Image

1 0 -1

1 0.1 -1

1 0 -1

Kernel

= ?

Filter Output

*
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Let’s have a look at 1D 
convolution
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Let’s have a look at 1D Convolution

Let us consider a 1d signal 𝑦𝑦 and a filter 𝒘𝒘.
Their convolution is also a signal 𝑧𝑧 = 𝑦𝑦 ⨂𝒘𝒘.

For continuous-domain 1D signals and filters

𝑧𝑧 𝜏𝜏 = 𝑦𝑦 ⨂𝒘𝒘 𝜏𝜏 = �
ℝ
𝑦𝑦 𝑡𝑡 𝒘𝒘 𝜏𝜏 − 𝑡𝑡 𝑑𝑑𝑑𝑑

that is equivalent to 

𝑧𝑧 𝜏𝜏 = 𝑦𝑦 ⨂𝒘𝒘 𝜏𝜏 = �
ℝ
𝑦𝑦 𝜏𝜏 − 𝑡𝑡 𝒘𝒘 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡

At each 𝜏𝜏, the convolution is the area under 𝑦𝑦(𝑡𝑡) weighted by the 
function 𝑤𝑤(−t) shifted by τ

𝑦𝑦

𝒘𝒘

𝜏𝜏 = 0 𝜏𝜏 > 0𝜏𝜏 < 0
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Let’s have a look at 1D Convolution

For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝑦𝑦 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples

𝒚𝒚(−𝟒𝟒) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟒𝟒)

𝒘𝒘(−𝟐𝟐) 𝒘𝒘(−𝟏𝟏) 𝒘𝒘(𝟎𝟎) 𝒘𝒘(𝟏𝟏) 𝒘𝒘(𝟐𝟐)

𝒚𝒚(𝟒𝟒) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟒𝟒)

Sum

Product
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Let’s have a look at 1D Convolution

For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝑦𝑦 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples

𝒚𝒚(−𝟒𝟒) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟒𝟒)

𝒘𝒘(−𝟐𝟐) 𝒘𝒘(−𝟏𝟏) 𝒘𝒘(𝟎𝟎) 𝒘𝒘(𝟏𝟏) 𝒘𝒘(𝟐𝟐)

𝒚𝒚(𝟒𝟒) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟒𝟒)
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Let’s have a look at 1D Convolution

For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝑦𝑦 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples

𝒚𝒚(−𝟒𝟒) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟒𝟒)

𝒘𝒘(−𝟐𝟐) 𝒘𝒘(−𝟏𝟏) 𝒘𝒘(𝟎𝟎) 𝒘𝒘(𝟏𝟏) 𝒘𝒘(𝟐𝟐)

𝒚𝒚(𝟒𝟒) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟒𝟒)
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Let’s have a look at 1D Convolution

For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝑦𝑦 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples

𝒚𝒚(−𝟒𝟒) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟒𝟒)

𝒘𝒘(−𝟐𝟐) 𝒘𝒘(−𝟏𝟏) 𝒘𝒘(𝟎𝟎) 𝒘𝒘(𝟏𝟏) 𝒘𝒘(𝟐𝟐)

𝒚𝒚(𝟒𝟒) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟒𝟒)
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Let’s have a look at 1D Convolution

For discrete signals and filters

𝑧𝑧 𝑛𝑛 = 𝑦𝑦 ⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 − 𝑚𝑚 𝒘𝒘(𝑚𝑚)

where the filter has (2𝐿𝐿 + 1) samples

𝒚𝒚(−𝟒𝟒) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟒𝟒)

𝒘𝒘(−𝟐𝟐) 𝒘𝒘(−𝟏𝟏) 𝒘𝒘(𝟎𝟎) 𝒘𝒘(𝟏𝟏) 𝒘𝒘(𝟐𝟐)

𝒚𝒚(𝟒𝟒) 𝒚𝒚(𝟑𝟑) 𝒚𝒚(𝟐𝟐) 𝒚𝒚(𝟏𝟏) 𝒚𝒚(𝟎𝟎) 𝒚𝒚(−𝟏𝟏) 𝒚𝒚(−𝟐𝟐) 𝒚𝒚(−𝟑𝟑) 𝒚𝒚(−𝟒𝟒)
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1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝑦𝑦⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

𝑦𝑦 = sin 𝑥𝑥 ,𝒘𝒘 =
1
5

,
1
5

,
1
5

,
1
5

,
1
5

, 𝐿𝐿 = 2
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

𝑦𝑦
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1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝑦𝑦⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

𝑦𝑦 = sin 𝑥𝑥 ,𝒘𝒘 =
1
5

,
1
5

,
1
5

,
1
5

,
1
5

, 𝐿𝐿 = 2

𝑦𝑦

0.766 ≈
1
5 ∗ 0.48 +

1
5 ∗ 0.84 +

1
5 ∗ 1 +

1
5 ∗ 0.91 +

1
5 ∗ 0.60

𝑦𝑦
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1D Convolution - example

𝑧𝑧 𝑛𝑛 = 𝑦𝑦⨂𝒘𝒘 𝑛𝑛 = �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 −𝑚𝑚 𝒘𝒘(𝑚𝑚)

= �
𝑚𝑚=−𝐿𝐿

𝐿𝐿

𝑦𝑦 𝑛𝑛 + 𝑚𝑚 𝒘𝒘(−𝑚𝑚)

𝑦𝑦

𝑦𝑦

The minus in the formula above  
indicates a flip. Flipping the filter ℎ 
or the signal 𝑦𝑦 is the same.
Here there is no point of flipping ℎ 
since it is symmetric w.r.t. its center
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What about an imupulse?
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What about an imupulse?
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What about noise?
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What about noise?
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Let’s go back to 
2D convolution now
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A well-known Test Image - Lena
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A Trivial example

0 0 0

0 1 0

0 0 0

* =
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Linear Filtering

1 1 1

1 1 1

1 1 1
9
1* = ?
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The original Lena image
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Filtered Lena Image
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25
1* =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
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The original Lena image
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The filtered Lena image
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What about normalization?
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…what about

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
25

 ̇⨂ =
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… convolution is linear
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…what about

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2
25

 ̇ ⨂ =
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… convolution is linear
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2D Gaussian Filter

( ) ( )







 +
−= 2

22

2 2
exp

2
1,

σπσσ
yxyxH

( ) ( )







 +
−= 2

22

2 2
exp

2
1,

σπσ
jijiG

Continuous Function

Discrete kernel: assuming 𝐺𝐺 is a (2𝑘𝑘 + 1) × 2𝑘𝑘 + 1 filter

That is then normalized such that ∑𝑖𝑖=−𝑘𝑘𝑘𝑘 ∑𝑗𝑗=−𝑘𝑘𝑘𝑘 𝐺𝐺 𝑖𝑖, 𝑗𝑗 = 1
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2D Gaussian Filter

sigma = 2
gaussian = cv2.getGaussianKernel(filter_size, sigma)
filter_gaussian = np.outer(gaussian, gaussian)
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Weighted local averaging filters: Gaussian Filter

* =

1
2

3
4

5
6

7

1
2

3
4

5
6

7

0

0.05

0.1

0.15

0.2
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Weighted local averaging filters: Gaussian Filter
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Convolution Properties
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Properties of Convolution: Linearity

It is a linear operator
𝜆𝜆𝐼𝐼1 + 𝜇𝜇𝐼𝐼2 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐) = 𝜆𝜆 𝐼𝐼1 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐) + 𝜇𝜇 𝐼𝐼2 ⊛𝒘𝒘 (𝑟𝑟, 𝑐𝑐)

where 𝜆𝜆, 𝜇𝜇 ∈ ℝ

Obviously, when the filter is center-symmetric, convolution and correlation
are equivalent
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Properties of Convolution (and Padding)

It is commutative (in principle)
𝐼𝐼1 ⊛ 𝐼𝐼2 = 𝐼𝐼2 ⊛ 𝐼𝐼1

However, in discrete signals it depends on the padding criteria In continuous domain 
it holds as well as on periodic signals

Filter must be centered in 
the colored region to 
remain inside the image

Original image is in white, light blue 
values are padded to zero to enable

convolution at image boundaries
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Is Convolution Commutative?

⊛ =
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Is Convolution Commutative?

⊛ =
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Translation

⊛ =
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Translation

⊛ =

Remember the filter has to be flipped before convolution
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Is Convolution Commutative?

⊛ =

This holds for the «full 
convolution» modality, not
the «same» or «valid»
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Properties of Convolution: Associative

It is also associative
𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘 = (𝑓𝑓 ⊛ 𝑔𝑔) ⊛𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘

and dissociative

𝑓𝑓 ⊛ 𝑔𝑔 + 𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔 + 𝑓𝑓 ⊛𝒘𝒘
It is shift-invariant, namely

𝐼𝐼(⋅ −𝑟𝑟0,⋅ −𝑐𝑐0) ⊛ℎ 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ ℎ 𝑟𝑟 − 𝑟𝑟0, 𝑐𝑐 − 𝑐𝑐0

Any linear and shift invariant system can be written as a convolution
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Properties of Convolution: Shift invariance

It is also associative
𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘 = (𝑓𝑓 ⊛ 𝑔𝑔) ⊛𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔⊛𝒘𝒘

and dissociative

𝑓𝑓 ⊛ 𝑔𝑔 + 𝒘𝒘 = 𝑓𝑓 ⊛ 𝑔𝑔 + 𝑓𝑓 ⊛𝒘𝒘

It is shift-invariant, namely
𝐼𝐼(⋅ −𝑟𝑟0,⋅ −𝑐𝑐0) ⊛𝒘𝒘 𝑟𝑟, 𝑐𝑐 = 𝐼𝐼 ⊛ 𝒘𝒘 𝑟𝑟 − 𝑟𝑟0, 𝑐𝑐 − 𝑐𝑐0

Any linear and shift invariant system can be written as a convolution
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A bit of theory behind 
convolution

Giacomo Boracchi

giacomo.boracchi@polimi.it

Image Analysis and Computer Vision 

UEM, Maputo

https://boracchi.faculty.polimi.it

mailto:giacomo.boracchi@unibocconi.it
https://boracchi.faculty.polimi.it/
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Systems

Consider a system 𝐻𝐻 as a black box that processes an input signal (𝑓𝑓) 
and gives the output (i.e, 𝐻𝐻[𝑓𝑓])

The input is a signal The output is a 
signal



IACV, UEM Maputo, Boracchi

Systems

Consider a system 𝐻𝐻 as a black box that processes an input signal (𝑓𝑓) 
and gives the output (i.e, 𝐻𝐻[𝑓𝑓])

In our case, 𝑓𝑓 is a digital image (a 2D matrix), but in principle could be 
any (analogic or digital) n-dimensional  signal
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Linearity and Time Invariance

A system is linear if and only if

𝐻𝐻 𝜆𝜆 𝑓𝑓 𝑡𝑡 + 𝜇𝜇 𝑔𝑔(𝑡𝑡) = 𝜆𝜆𝜆𝜆 𝑓𝑓 (𝑡𝑡) + 𝜇𝜇 𝐻𝐻 𝑔𝑔 (𝑡𝑡)
holds for any 𝜆𝜆, 𝜇𝜇 ∈ ℝ and for 𝑓𝑓,𝑔𝑔 arbitrary signals (this is the canonical 
definition of linearity for an operator)

A system is time (or shift) – invariant if and only if

𝐻𝐻 𝑓𝑓 𝑡𝑡 − 𝑡𝑡0 = 𝐻𝐻 𝑓𝑓 𝑡𝑡 − 𝑡𝑡0
holds for any 𝑡𝑡0 ∈ ℝ and for any signal 𝑓𝑓
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent 
convolutional operator

• LTI systems are characterized entirely by a single function, the filter

• The filter is also called system's the impulse response as it 
corresponds to the output of an impulse fed to the system

𝐻𝐻
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Linear and Time Invariant Systems

All the systems that are Linear and Time Invariant (LTI) have an equivalent 
convolutional operator

• LTI systems are characterized entirely by a single function, the filter

• The filter is also called system's the impulse response or point 
spread function, as it corresponds to the output of an impulse fed to 
the system

𝐻𝐻
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The Impulse Response
Take as input image a discrete Dirac

This is why ℎ is also called the “Point Spread Function”

⊛ =
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Denoising
An application scenario for digital filters
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The effects of smoothing 
Each row shows smoothing
with gaussians of different
width; each column shows
different realisations of 
an image of gaussian noise.

Low - Pass



IACV, UEM Maputo, Boracchi

Denoising: The Issue

A Detail in 
Camera Raw 
Image
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Denoising: The Issue

Denoised
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Denoising: The Issue
A Detail in Camera 
Raw Image
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Denoising: The Issue
Denoised
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where

• 𝑥𝑥 denotes the pixel coordinates in the domain 𝒳𝒳 ⊂ ℤ2

• 𝑦𝑦 is the original (noise-free and unknown) image 

• 𝑧𝑧 is the noisy observation

• 𝜂𝜂 is the noise realization
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Image Formation Model

Observation model is
𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

The goal is to compute �𝑦𝑦 realistic estimate of 𝑦𝑦, given  𝑧𝑧 and the 
distribution of 𝜂𝜂.

For the sake of simplicity we assume AWG: 𝜂𝜂 ∼ 𝑁𝑁(0,𝜎𝜎2) and 𝜂𝜂(𝑥𝑥)
independent realizations. 

The noise standard deviation 𝜎𝜎 is also assumed as known.
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Convolution and Regression

Observation model is

Consider a regression problem 
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Fitting and Convolution

The convolution provides the BLUE (Best Linear Unbiased Estimator) for 
regression when the image 𝑦𝑦 is constant

The problem: estimating the constant 𝐶𝐶 that minimizes a weighted loss 
over noisy observations 

Where

This problem can e solved by computing the convolution of the image 𝑧𝑧
against a filter whose coefficients are the error weights 
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Observation model is

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a 
parametric expression of     on 

Image Formation Model
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Observation model is

Thus we can pursue a “regression-approach”, but on images it may not be convenient to assume a 
parametric expression of     on 

Image Formation Model
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Local Smoothing

Additive Gaussian 
White Noise

After Gaussian Smoothing

After Averaging

),( σµη N≈
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝑦𝑦(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧
given 𝑥𝑥

�𝑦𝑦 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝑦𝑦(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧 given 𝑥𝑥
�𝑦𝑦 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Parametric Approaches
• Transform Domain Filtering, they assume the noisy-free signal is somehow 

sparse in a suitable domain (e.g Fourier, DCT, Wavelet) or w.r.t. some dictionary 
based decomposition)

Non Parametric Approaches
• Local Smoothing / Local Approximation

• Non Local Methods

Estimating 𝑦𝑦(𝑥𝑥) from 𝑧𝑧(𝑥𝑥) can be statistically treated as regression of 𝑧𝑧 given 𝑥𝑥
�𝑦𝑦 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]
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Denoising Approaches

Spatially adaptive methods, The basic principle:

• there are no simple models able to describe the whole image 𝑦𝑦, thus 
perform the regression �𝑦𝑦 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥]

• Adopt a simple model in small image regions. For instance
∀𝑥𝑥 ∈ 𝑋𝑋, ∃ �𝑈𝑈𝑥𝑥 s. t. 𝑦𝑦|�𝑈𝑈𝑥𝑥 is a polynomial

• Define, in each image pixel, the “best neighborhood” where a simple 
parametric model can be enforced to perform regression. 

• For instance, assume that on a suitable pixel-dependent neighborhood, 
where the image can be described by a polynomial
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Ideal neighborhood – an illustrative example
Ideal in the sense that it defines the support of a pointwise Least Square 
Estimator of the reference point. 

Typically, even in simple images, every point has its own different ideal 
neighborhood.

For practical reasons, the ideal neighborhood is assumed starshaped

Further details at LASIP c/o Tampere University of Technology 
http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
http://www.cs.tut.fi/%7Elasip/
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Neighborhood discretization

A suitable discretization of this neighborhood is obtained by using a set of  
directional LPA kernels 𝑔𝑔𝜃𝜃,ℎ 𝜃𝜃,ℎ

where 𝜃𝜃 determines the orientation of the kernel support, and ℎ controls 
the scale of kernel support.

http://www.cs.tut.fi/~lasip/

Ideal 
Neighborhood

Directional
kernels

Discrete Adaptive 
Neighborhood

http://www.cs.tut.fi/%7Elasip/
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Ideal neighborhood – an illustrative example
Ideal in the sense that the neighborhood defines the support of pointwise Least Square Estimator of the reference point.

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Examples of Adaptively Selected Neighorhoods

Define, ∀𝑥𝑥 ∈ 𝑋𝑋 , the “ideal” neighborhood �𝑈𝑈𝑥𝑥
Compute the denoised estimate at 𝑥𝑥 by “using” only pixels in �𝑈𝑈𝑥𝑥 and a 
polynomial model to perofrm regression �𝑦𝑦 𝑥𝑥 = E 𝑧𝑧 𝑥𝑥, �𝑈𝑈𝑥𝑥]

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Examples of adaptively selected neighorhoods

Neighborhoods adaptively selected using the LPA-ICI rule

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Example of Performance

Original, noisy, denoised using polynomial regression on adaptively 
defined neighborhoods (LPA-ICI)

http://www.cs.tut.fi/~lasip/

http://www.cs.tut.fi/%7Elasip/
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Blur & Noise In Image Formation



IACV, UEM Maputo, Boracchi

Noise 

The acquired image is different from the original scene because of sensor 
limitations

The CCD sensors and the whole acquisition pipeline are affected by 
different sources of noise:

• Thermal noise

• Quantization noise

• Dark current noise

• Photon-counting noise

And other aberrations such as dark fixed-pattern noise, light fixed-pattern 
noise,…
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In the most simple settings

Observation model is
𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where

• 𝑥𝑥 denotes the pixel coordinates in the 
domain 𝒳𝒳 ⊂ ℤ2

• 𝑦𝑦 is the original (noise-free and unknown) 
image 

• 𝑧𝑧 is the noisy observation

• 𝜂𝜂 is the noise realization
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Additive Gaussian White Noise (AWGN)

Additive White Gaussian Noise is a 
frequently encountered assumption

White Gaussian noise is a very practical 
approximation not to account for each 
noise source.

However, this is a very coarse 
approximation, since we all have 
experienced that dark regions are 
typically more be noisy than correctly 
exposed ones.
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Signal Dependent Noise Model

Photon counting, like other counting processes, are modelled by a Poisson 
distribution. 

Image formation model becomes:
𝑧𝑧 𝑥𝑥 = 𝑢𝑢 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where
𝑢𝑢 𝑥𝑥 ∼ 𝒫𝒫 𝜆𝜆 ⋅ 𝑦𝑦 𝑥𝑥

• 𝒫𝒫 denotes the Poisson distribution, 𝜆𝜆 > 0 is the quantum efficiency of 
the sensor. 

• 𝜂𝜂 ∼ 𝒩𝒩(0,𝜎𝜎2) is the Gaussian noise term due to thermal and 
quantization noise 

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012
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Signal Dependent Noise Term

The term 𝑢𝑢 includes the signal-dependent noise 
𝑢𝑢 𝑥𝑥 ∼ 𝒫𝒫 𝜆𝜆 ⋅ 𝑦𝑦 𝑥𝑥

Remarks from Poisson distribution

• E 𝑢𝑢 𝑥𝑥 = 𝜆𝜆 ⋅ 𝑦𝑦 𝑥𝑥
• var 𝑢𝑢(𝑥𝑥) = 𝜆𝜆 ⋅ 𝑦𝑦 𝑥𝑥 -> The noise variance depends on the amount of 

light reaching the sensor

• 𝑆𝑆𝑆𝑆𝑆𝑆 𝑢𝑢 𝑥𝑥 = E 𝑢𝑢 𝑥𝑥 2

var 𝑢𝑢(𝑥𝑥)
= 𝜆𝜆 ⋅ 𝑦𝑦(𝑥𝑥)

The noise variance is higher in brighter regions, but the signal to noise is 
lower here!
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Here is an Example of Noisy Picture

G. Boracchi, A. Foi Multiframe Raw-Data Denoising Based On Block-Matching And 3-D Filtering For Low-Light Imaging And Stabilization, LNLA 2008

Here the variance is large, but
denoising is relatively simple
since the SNR is high

Here the variance is low, and the 
same for the SNR. Dark regions are the 
most challenging location for 
denoising
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Signal Dependent Noise
Poisson and Gaussian noise component can be conveniently approximated as:

𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜎𝜎 𝑦𝑦 𝑥𝑥 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where 

• 𝜎𝜎 is a function defining the noise variance of the overall noise component that 
depends on the true image intensity 𝑦𝑦. A good model 𝜎𝜎2 = 𝑎𝑎𝑎𝑎 𝑥𝑥 + 𝑏𝑏, where the 
parameters 𝑎𝑎, 𝑏𝑏 depend on the camera

• 𝜂𝜂 ∼ 𝑁𝑁(0, 1) is white noise

Foi A, Trimeche M, Katkovnik V, Egiazarian K. Practical Poissonian–Gaussian noise modeling and fitting for single image raw-data. IEEE Trans Image Process. 2008
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Signal Dependent Noise
Poisson and Gaussian noise component can be conveniently approximated as:

𝑧𝑧 𝑥𝑥 = 𝑦𝑦 𝑥𝑥 + 𝜎𝜎 𝑦𝑦 𝑥𝑥 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where

• 𝜎𝜎 is a function defining the noise variance of the overall noise component that 
depends on the true image intensity 𝑦𝑦. A good model 𝜎𝜎2 = 𝑎𝑎𝑎𝑎 𝑥𝑥 + 𝑏𝑏, where the 
parameters 𝑎𝑎, 𝑏𝑏 depend on the camera

• 𝜂𝜂 ∼ 𝑁𝑁(0, 1) is white noise

Foi A, Trimeche M, Katkovnik V, Egiazarian K. Practical Poissonian–Gaussian noise modeling and fitting for single image raw-data. IEEE Trans Image Process. 2008

It is apparent that signal-dependent noise model needs to be taken into 
account in denoising algorithms…. Therefore you need special algorithms for 
signal-dependent noise

It is possible to estimate Variance Stabilizing Transforms (VST), which perform 
an intensity mapping to change the signal to have (approximately) unitary 
variance disregarding the light intensity.

In practice, it is better to perform VST + denoising for AWGN, rather than design 
denoising algorithms that are specific for signal-dependent noise
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Signal and Time Dependent Noise

The exposure time heavily impact on noise, since the noise variance 
ultimately depends on the amount of light reaching the sensor.

This can be conveniently approximated as:
𝑧𝑧𝑇𝑇 𝑥𝑥 = 𝑢𝑢𝑇𝑇 𝑥𝑥 + 𝜂𝜂 𝑥𝑥 , 𝑥𝑥 ∈ 𝒳𝒳

Where 

𝑢𝑢𝑇𝑇 𝑥𝑥 ∼ 𝒫𝒫 𝜆𝜆�
0

𝑇𝑇
𝑦𝑦 𝑥𝑥 − 𝑠𝑠 𝑡𝑡 𝑑𝑑𝑑𝑑

And 𝒫𝒫 denotes the Poisson distribution, 𝜆𝜆 is the quantum efficiency and 
𝑠𝑠 ⋅ is the trajectory of the sensor due to motion.

Motion results in Motion Blur

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012
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Point Spread Function

The Point Spread Function (we will see
later the reason of this name) can be 
obtained by discretizing the camera 
trajectory 𝑠𝑠(⋅) into an image

This term is responsible of the blur in 
the image

�
0

𝑇𝑇
𝑦𝑦 𝑥𝑥 − 𝑠𝑠 𝑡𝑡 𝑑𝑑𝑑𝑑

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012

An example of PSF trajectory generated from a random motion and the 
corresponding sampled PSF. This trajectory presents an impulsive 

variation of the velocity vector, thus mimicking the situation where the 
user presses the button or tries to compensate the camera shake



IACV, UEM Maputo, Boracchi

Exposure time 1/13’’

Giacomo Boracchi
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Exposure time 1/13’’

Giacomo Boracchi
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Exposure time 0.8’’

Giacomo Boracchi
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Exposure time 0.8’’

Giacomo Boracchi
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The Blur-Noise Trade-Off

G. Boracchi, A. Foi Modeling the Performance of Image Restoration from Motion Blur IEEE TIP 2012
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Nonlinear Filters
Giacomo Boracchi

giacomo.boracchi@polimi.it

Image Analysis and Computer Vision 

UEM, Maputo
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Nonlinear Filters

Non Linear Filters are such that the relation
𝐻𝐻 𝜆𝜆 𝑓𝑓 𝑡𝑡 + 𝜇𝜇 𝑔𝑔(𝑡𝑡) = 𝜆𝜆𝜆𝜆 𝑓𝑓 (𝑡𝑡) + 𝜇𝜇 𝐻𝐻 𝑔𝑔 (𝑡𝑡)

does not hold, at least for some value of 𝜆𝜆, 𝜇𝜇, 𝑓𝑓,𝑔𝑔 or point 𝑡𝑡.

Examples of nonlinear filter are

• Median Filter (Weighted Median)

• Ordered Statistics based Filters

• Threshold, Shrinkage

There are many others, such as data adaptive filtering procedures (e.g
LPA-ICI)
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Blockwise Median

Block-wise median: replaces each pixel with the median of its 
neighborhood. It is still a local spatial transformation!

This is edge-preserving and robust to outliers!

1 3 0

2 10 2

4 1 1

2

2)1,1,4,2,10,2,0,3,1( == medianm

med
𝑐𝑐

𝑟𝑟

𝐼𝐼
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Salt-and-pepper noise

Salt and Pepper (Impulsive) noise
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Denoisng using local smoothing 3x3
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Denoisng with median 3x3

Salt and Pepper (Impulsive) noise
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Morphological Operations
Ordered Statitiscs and Blob Labeling
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Binary images

A binary image is defined as 𝐼𝐼 ∈ 0,1 𝑅𝑅×𝐶𝐶

Each pixel can be either true (1) / false (0) 

Typically binary images are the result of pre-
processing operations including thresholding
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An overview on morphological operations

Erosion, Dilation

Open, Closure

We assume the image being processed is binary, as these operators are 
typically meant for refining “mask” images.
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Boolean operations on binary images 𝐼𝐼 ∈ 0,1 𝑅𝑅×𝐶𝐶

A NOT(A)

NOT_A = A == 0

True 1 / false 0
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UNION of binary images

A A ∪ BB

� 𝑈𝑈 =

𝐴𝐴 ∪ 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵 > 0

Equivalent to the OR operation



IACV, UEM Maputo, Boracchi

INTERSECTION of binary images

A ∩ B

� 𝑈𝑈 =

B

𝐴𝐴 ∩ 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵 > 1

A

Equivalent to the AND operation
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On binary images it is possible to define XOR

A XOR(A,B)

� 𝑈𝑈 =

B

XOR(A,B) = 𝐴𝐴 ∪ 𝐵𝐵 − 𝐴𝐴 ∩ 𝐵𝐵
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What do we use this for?
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Intersection over the Union (IoU, Jaccard Index)

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718561
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Intersection over the Union (IoU, Jaccard Index)

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718560



IACV, UEM Maputo, Boracchi

Intersection over the Union (IoU, Jaccard Index)

By Adrian Rosebrock http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57718559
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Jaccard Index (IoU)

It is a statistical measure of similarity between two sets, being in case of 
images the coordinates of the pixels set to true

𝐽𝐽 𝐴𝐴,𝐵𝐵 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

It ranges between 0,1 being 𝐽𝐽 𝐴𝐴,𝐵𝐵 = 0 when 𝐴𝐴 and 𝐵𝐵 are disjoint, and 
𝐽𝐽 𝐴𝐴,𝐵𝐵 = 1, when the two sets coincides.

It is a standard reference measure for detection performance
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Jaccard Index (IoU)

It is not necessarily defined for bounding boxes (even though most of 
deep learning networks for detections provide bb as outputs)

Credits Barozzi – Guidi IACV project 2017
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Jaccard Index (IoU)
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Jaccard Index (IoU)
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Jaccard Index (IoU)

𝐴𝐴
Ground Truth

(annotated region)

𝐵𝐵
Detection Output
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Jaccard Index (IoU)

𝐽𝐽 𝐴𝐴,𝐵𝐵 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|
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Filters on binary images

It is possible to define filtering operations between binary images

Consider also binary filters, i.e. spatial filters having binary weights.

In the context of object detection, these can be used to refine the 
detection boundaries
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Erosion

General definition:  
Nonlinear Filtering procedure that replaces each pixel value, with the 
minimum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff the image in the neighbor is constantly 1

This operation reduces thus the boundaries of binary images

It can be interpreted as an AND operation of the image and the neighbour
overlapped at each pixel
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Erosion

ERODE(A, 𝑈𝑈)

=

𝑈𝑈A
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Erosion

=

The gray area corresponds
to the input

A ERODE(A, 𝑈𝑈)𝑈𝑈
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Erosion

ERODE(A,B)

=

H

Erosion removes half size of the structuring element used as filter
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Erosion

=

A ERODE(A, 𝑈𝑈)𝑈𝑈
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Erosion

A

=

ERODE(A, 𝑈𝑈)𝑈𝑈
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Dilation
General definition: 
Nonlinear Filtering procedure that replaces to each pixel value, with the 
maximum on a given neighbor

As a consequence on binary images, it is equivalent to the following rule:
E(x)=1 iff at least a pixel in the neighbor is 1

This operation grows fat the boundaries of binary images

It can be interpreted as an OR operation of the image and the neighbour
overlapped at each pixel
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Dilation

=

A DILATE(A, 𝑈𝑈)𝑈𝑈
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Dilation

=

The brighter area now
corresponds to the input

A DILATE(A, 𝑈𝑈)𝑈𝑈
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Dilation

=

Dilation expands half size of the structuring element used as filter
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Dilation

=

A DILATE(A, 𝑈𝑈)𝑈𝑈
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Dilation

=

A DILATE(A, 𝑈𝑈)𝑈𝑈
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Open and Closure

Open Erosion followed by a Dilation

Closure Dilation followed by an Erosion
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Open 

Open Erosion followed by a Dilation

• Smooths the contours of an object

• Typically eliminates thin protrusions
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Open

A

𝑈𝑈

O = ERODE(A,𝑈𝑈) O = DILATE(O, 𝑈𝑈)
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Open

A

𝑈𝑈

O = ERODE(A,𝑈𝑈) O = DILATE(O, 𝑈𝑈)
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Open

A

𝑈𝑈
The gray area corresponds

to the input

O = ERODE(A,𝑈𝑈) O = DILATE(O, 𝑈𝑈)
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Closure

Closure Dilation followed by an Erosion

• Smooths the contours of an object, typically creates bridges

• Generally fuses narrow breaks
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Close

A

𝑈𝑈

O = DILATE(A,𝑈𝑈) O = ERODE(O, 𝑈𝑈)
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Close

A

𝑈𝑈 The gray spot was «false» 
in the input

O = DILATE(A,𝑈𝑈) O = ERODE(O, 𝑈𝑈)



IACV, UEM Maputo, Boracchi

There are several other Non Linear Filters

Ordered Statistic based
• Median Filter 

• Weight Ordered Statistic Filter (being erosion and dilation special cases)

• Trimmed Mean

• Hybrid Median

Ordered statistics filters (including erosion and dilation) can be applied to 
grayscale images as well, as their definition is general

In Python: skimage.morphology 
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Digital Image Filters: 
Derivatives and Edges

Giacomo Boracchi

Image Analysis and Computer Vision

Politecnico di Milano

November 19, 2021

Book: GW chapters 3, 9, 10
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Derivatives Estimation
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Differentiation and convolution

Recall the definition of derivative

Now this is linear and shift invariant. 

Therefore, in discrete domain, it will be 
represented as a convolution

𝜕𝜕𝑓𝑓 𝑥𝑥0
𝜕𝜕𝜕𝜕

= lim
𝜖𝜖→0

𝑓𝑓(𝑥𝑥0 + 𝜖𝜖) − 𝑓𝑓(𝑥𝑥0)
𝜖𝜖
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Differentiation and convolution

Recall the definition of derivative

Now this is linear and shift invariant. 

Therefore, in discrete domain, it will be 
represented as a convolution

We could approximate this as

which is obviously a convolution 
against the Kernel [1 -1]; 

𝜕𝜕𝑓𝑓(𝑥𝑥𝑛𝑛)
𝜕𝜕𝜕𝜕

≈
𝑓𝑓(𝑥𝑥𝑛𝑛+1) − 𝑓𝑓(𝑥𝑥𝑛𝑛)

Δ𝑥𝑥
𝜕𝜕𝑓𝑓 𝑥𝑥0
𝜕𝜕𝜕𝜕

= lim
𝜖𝜖→0

𝑓𝑓(𝑥𝑥0 + 𝜖𝜖) − 𝑓𝑓(𝑥𝑥0)
𝜖𝜖
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Finite Differences in 2D (discrete) domain
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Think of an image as a 2d, real-valued function
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A 1D Example

Take a line on a grayscale image
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A 1D Example (II)

Filter the image values by a convolution against  the filter [1 -1]

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition
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Derivatives

Derivatives are used to highlight intensity discontinuities in an image and 
to deemphasize regions with slowly varying intensity levels

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition
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Differentiating Filters

The derivatives can be also computed using centered filters:
𝑓𝑓𝑥𝑥 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 − 1 − 𝑓𝑓(𝑥𝑥 + 1)

Such that the horizontal derivative is:

While the vertical derivative is:

1 0 -1

𝑡𝑡

𝑓𝑓𝑥𝑥 = 𝑓𝑓 ⊗

𝑓𝑓𝑦𝑦 = 𝑓𝑓 ⊗ 1 0 -1
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Classical Operators: Prewitt
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Classical Operators: Sobel



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Horizontal derivative

Vertical derivative

𝑠𝑠 = 𝑑𝑑𝑑𝑑 =

𝑠𝑠 = 𝑑𝑑𝑑𝑑 =

ℎ𝑥𝑥 = 𝑠𝑠 ⊛ 𝑑𝑑𝑑𝑑 =

ℎ𝑦𝑦 = 𝑠𝑠 ⊛ 𝑑𝑑𝑑𝑑 =
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Another famous test image - cameraman
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𝛻𝛻𝐼𝐼𝑥𝑥 = 𝐼𝐼 ⊛ 𝑑𝑑𝑥𝑥

𝜵𝜵𝐼𝐼(𝑟𝑟, 𝑐𝑐) =
𝛻𝛻𝐼𝐼𝑥𝑥(𝑟𝑟, 𝑐𝑐)
𝛻𝛻𝐼𝐼𝑦𝑦 (𝑟𝑟, 𝑐𝑐)

Horizontal Derivatives using Sobel
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Vertical Derivatives using Sobel

𝛻𝛻𝐼𝐼𝑦𝑦 = 𝐼𝐼 ⊛ 𝑑𝑑𝑦𝑦
𝑑𝑑𝑦𝑦= 𝑑𝑑𝑥𝑥′

𝜵𝜵𝐼𝐼(𝑟𝑟, 𝑐𝑐) =
𝛻𝛻𝐼𝐼𝑥𝑥(𝑟𝑟, 𝑐𝑐)
𝛻𝛻𝐼𝐼𝑦𝑦 (𝑟𝑟, 𝑐𝑐)
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𝛻𝛻𝐼𝐼 = 𝐼𝐼 ⊛ 𝑑𝑑𝑥𝑥 2 + 𝐼𝐼 ⊛ 𝑑𝑑𝑦𝑦
2

 

Gradient Magnitude

𝜵𝜵𝐼𝐼(𝑟𝑟, 𝑐𝑐) =
𝛻𝛻𝐼𝐼𝑥𝑥(𝑟𝑟, 𝑐𝑐)
𝛻𝛻𝐼𝐼𝑦𝑦 (𝑟𝑟, 𝑐𝑐)
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The Gradient Orientation

Like for continuous function, the gradient in each pixel points at the 
steepest growth/decrease direction.

The gradient norm indicates the strength of the intensity variation

Let’s switch to Matlab….. 

∠𝛻𝛻𝐼𝐼 𝑟𝑟, 𝑐𝑐 = atand
𝛻𝛻𝐼𝐼𝑦𝑦(𝑟𝑟, 𝑐𝑐)
𝛻𝛻𝐼𝐼𝑥𝑥(𝑟𝑟, 𝑐𝑐)

= atand
𝐼𝐼 ⊛ 𝑑𝑑𝑦𝑦 (𝑟𝑟, 𝑐𝑐)
𝐼𝐼 ⊛ 𝑑𝑑𝑥𝑥 (𝑟𝑟, 𝑐𝑐)
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Think of an image as a 2d, real-valued function
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The Image Gradient

Image Gradient is the gradient of a real-valued 2D function

𝛻𝛻𝐼𝐼 𝑟𝑟, 𝑐𝑐 =
𝐼𝐼 ⊛ 𝑑𝑑𝑥𝑥
𝐼𝐼 ⊛ 𝑑𝑑𝑦𝑦

(𝑟𝑟, 𝑐𝑐)

where principal derivatives are computed through convolution against the 
derivative filters (e.g. Prewitt)

𝑑𝑑𝑑𝑑 =
1 0 −1
1 0 −1
1 0 −1

, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑥𝑥′

Image gradient behaves like the gradient of a function:

|𝛻𝛻𝐼𝐼 𝑟𝑟, 𝑐𝑐 | is large where there are large variations

∠𝛻𝛻𝐼𝐼 𝑟𝑟, 𝑐𝑐 is the direction of the steepest variation
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Think of an image as a 2d, real-valued function

Local spatial transformations are defined over neighborhood like this
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Think of an image as a 2d, real-valued function

What about the gradient in this neighborhood?
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Think of an image as a 2d, real-valued function

What about the gradient in this neighborhood?
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Think of an image as a 2d, real-valued function
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Higher Order Derivatives
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Derivatives

Derivatives are used to highlight intensity discontinuities in an image and 
to deemphasize regions with slowly varying intensity levels

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition
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Second Order Derivatives

The Laplacian of the second order derivative is defined as

𝛻𝛻2𝐼𝐼 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

where

𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

= 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 + 𝐼𝐼 𝑥𝑥 − 1,𝑦𝑦 − 2𝐼𝐼(𝑥𝑥,𝑦𝑦)

𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

= 𝐼𝐼 𝑥𝑥,𝑦𝑦 − 1 + 𝐼𝐼 𝑥𝑥,𝑦𝑦 + 1 − 2𝐼𝐼(𝑥𝑥,𝑦𝑦), thus

𝛻𝛻2𝐼𝐼 = 𝐼𝐼 𝑥𝑥 + 1,𝑦𝑦 + 𝐼𝐼 𝑥𝑥 − 1,𝑦𝑦 + 𝐼𝐼 𝑥𝑥,𝑦𝑦 − 1 + 𝐼𝐼 𝑥𝑥,𝑦𝑦 + 1 − 4𝐼𝐼 𝑥𝑥,𝑦𝑦
It’s a linear operator -> it can be implemented as a convolution

TODO: prove that the second order derivatve is like this
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Filter for Digital Laplacian

0 1 0

1 -4 1

0 1 0

1 1 1

1 -8 1

1 1 1

The Laplacian of the second order derivative is defined as

𝛻𝛻2𝐼𝐼 =
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐼𝐼
𝜕𝜕𝑦𝑦2

Alternative 
definition, inviariant

to 45° rotation

Standard 
definition, inviariant

to 90° rotation
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The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other 
discontinuities, all superimposed on a dark, featureless background.
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The Laplacian: Image Sharpening

The Laplacian of an image have grayish edge lines and other 
discontinuities, all superimposed on a dark, featureless background.
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The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian 
image to the original (provided suitable rescaling)

𝐺𝐺(𝑟𝑟, 𝑐𝑐) = 𝐼𝐼(𝑟𝑟, 𝑐𝑐) + 𝑘𝑘[𝛻𝛻2𝐼𝐼 𝑟𝑟, 𝑐𝑐 ]
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The Laplacian: Image Sharpening

Background features can be “recovered” simply by adding the Laplacian 
image to the original (provided suitable rescaling)

𝐺𝐺(𝑟𝑟, 𝑐𝑐) = 𝐼𝐼(𝑟𝑟, 𝑐𝑐) + 𝑘𝑘[𝛻𝛻2𝐼𝐼 𝑟𝑟, 𝑐𝑐 ]
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Edges in Images



IACV, UEM Maputo, Boracchi

Edge Detection in Images

Goal: Automatically find the contour of objects in a scene.

What For: Edges are significant for scene understanding, enhancement 
compression…

Typically the edge
mask is «flipped», 𝟏𝟏 
at edges and 𝟎𝟎 
elsewhere

Edge image
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Edges in Images

Depth 
discontinuities
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Edges in Images

Shadows
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Edges in Images

Discontinuities in 
the surface color, 
Color changes
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Edges in Images

Discontinuities in 
the surface
normal
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What is an Edge
Lets define an edge to be a discontinuity in image intensity function.

Several Models
• Step Edge
• Ramp Edge
• Roof Edge
• Spike Edge

They can be
thus detected as
discontinuities
of image 
Derivatives
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Edge Detection
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Gradient Magnitude and edge detectors

Gradient Magnitute is not a binary image

We can see edges but we cannot identify
them, yet

𝛻𝛻𝐼𝐼 = 𝐼𝐼 ⊛ 𝑑𝑑𝑥𝑥 2 + 𝐼𝐼 ⊛ 𝑑𝑑𝑦𝑦
2
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Detecting Edges in Image

Sobel Edge Detector

Image I
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Threshold
Edges

any alternative ?

Discrete Derivatives Gradient Norms Threshold
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Canny Edge Detector Criteria
Good Detection: The optimal detector must minimize the probability of false 

positives as well as false negatives.

Good Localization: The edges detected must be as close as possible to the true 
edges.

Single Response Constraint: The detector must return one point only for each 
edge point. similar to good detection but requires an ad-hoc formulation to 
get rid of multiple responses to a single edge

Poor singnal-to-noise ratio Poor localization Too many responsesTrue Edge
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Canny Edge Detector

It is characterized by 3 important steps
• Convolution with smoothing Gaussian filter before computing image derivatives

• Non-maximum Suppression

• Hysteresis Thresholding

J. Canny “A Computational Approach to Edge Detection” IEEE PAMI vol 8, no. 6, Nov. 1986 http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf

http://perso.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
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Canny Edge Detector

Smooth by Gaussian (smoothing regulated by 𝜎𝜎)

Compute x and y derivatives

Compute gradient magnitude and orientation

IGS *σ=
2

22

2

2
1 σ

σ σπ

yx

eG
+

−
=

[ ]Tyx

T

SSS
y

S
x
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



∂
∂

∂
∂

=∆

22
yx SSS +=∆

x

y

S
S1tan−=θ
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Canny Edge Operator (derivatives)

( ) IGIGS ** σσ ∆=∆=∆
T

y
G

x
GG 








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Convolution is associative

2D-Gaussian

∗  [1 0 − 1]  = 

x - derivative

𝐼𝐼⨂ 𝑔𝑔⨂𝑑𝑑𝑑𝑑
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Gaussian Derivative Filters

x-direction y-direction

The amount of smoothing is regulated by a parameter 𝜎𝜎
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Canny Edge Detector xS

yS

I
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Canny Edge Detector

I

22
yx SSS +=∆

25=≥∆ ThresholdS

Gradient Magnitude

Thresholded Gradient
Magnitude
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Non-Maximum Suppression: The Idea

We wish to determine the points along the curve where the gradient 
magnitude is largest. 

Non-maximum suppression: we look for a maximum along a slice 
orthogonal to the curve. These points form a 1D signal.  

Gradient Magnitude
(after thresholding)

Segment orthogonalOriginal Image
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Non-Maximum Suppression
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Non-Maximum Suppression: The Idea

There are two issues:

i. which slice to select to extract the maximum?

ii. once an edge pixel has been found, which pixel to test next?

Non-Maximum Suppression

Gradient Magnitude
(after thresholding)

Segment orthogonalOriginal Image
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Non-Maximum Suppression – Idea (II)

The intensity profile along the segment. 
We can easily identify the location of the 
maximum.

In each pixel, the gradient indicates the direction 
of the steepest variation: thus, the gradient is
orthogonal to the edge direction (no variation
along the edge). We have to consider pixels on a 
segment following the gradient direction

Gradient  
direction
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Non-Maximum Suppression - Threshold

Suppress the pixels in ‘Gradient Magnitude Image’ which are not local 
maximum

( ) ( )
( )

 and  are the 

neighbors of  in 

x , y x , y

x, y S

′ ′ ′′ ′′

∆

( ) ( )
( ) ( )
( ) ( )









′′′′∆>∆

′′∆>∆
∆=

otherwise0
,,&

,, if
,, yxSyxS

yxSyxS
yxSyxM

( )yx ′′,

( )yx,

( )yx ′′′′ , These have to be taken on a line 
along the gradient direction in (𝑥𝑥,𝑦𝑦)
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Non-Maximum Suppression: Quantize Gradient Directions

In practice the gradient directions are quantized according to 4 main
directions, each covering 45° (orientation is not considered)

• Thus, only diagonal, horizontal, vertical line segments are considered

We consider 4 quantized directions 0,1,2, 3

Orientation is irrelevant since this is meant for segment extraction

0

1
2

3

𝜃𝜃(𝒙𝒙𝟎𝟎) = atan
�𝜕𝜕 𝜕𝜕𝜕𝜕 𝐼𝐼(𝒙𝒙𝟎𝟎)

�𝜕𝜕 𝜕𝜕𝜕𝜕 𝐼𝐼(𝒙𝒙𝟎𝟎)
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Tracking the edge direction

The direction orthogonal to the gradient 
follows the edge

Once a local maxima is found, we consider 
the direction orthogonal to the gradient in 
that pixel,

The direction is quantized as for extracting 
the 1D segment for nonmaximum
suppression

We move one step in the quantized direction 
to determine another point where to extract 
1D segments
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Tracking the edge direction

The direction orthogonal to the gradient 
follows the edge

Once a local maxima is found, we consider 
the direction orthogonal to the gradient in 
that pixel,

The direction is quantized as for extracting 
the 1D segment for nonmaximum
suppression

We move one step in the quantized direction 
to determine another point where to extract 
1D segments
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Non-Maximum Suppression

22
yx SSS +=∆ M

25=≥ ThresholdM

Results from 
nonmaximum
suppression
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Hysteresis Thresholding

Use of two different threshold High and Low for 

• For new edge starting point

• For continuing edges

In such a way the edges continuity is preserved
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Hysteresis Thresholding

If the gradient at a pixel is above ‘High’ threshold, 

• declare it an ‘edge pixel’.

If the gradient at a pixel is below ‘Low’ threshold

• declare it a ‘non-edge-pixel’.

If the gradient at a pixel is between ‘Low’ and ‘High’ thresholds 

• then declare it an ‘edge pixel’ if and only if can be directly connected
to an ‘edge pixel’ or connected via pixels between ‘Low’ and ‘ High’.
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Hysteresis Thresholding

M 25=≥ ThresholdM

15  
35

=
=

Low
High
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Hysteresis Thresholding

25=≥ ThresholdM

15  
35

=
=

Low
High
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Hysteresis Thresholding

15  
35

=
=

Low
High
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Canny Edge Detection
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Canny Edge Detection
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Canny Edge Detection – changing hysteresis thresholds

Threshold: [Low, High], Sigma
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Canny Edge Detection – changing hysteresis thresholds

Decreasing the low threshold extends the 
length of existing edges
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Canny Edge Detection – changing hysteresis thresholds

Reference thresholds



IACV, UEM Maputo, Boracchi

Canny Edge Detection – changing hysteresis thresholds

Increasing the low threshold shorten edges
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Canny Edge Detection – changing hysteresis thresholds

Reference thresholds
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Canny Edge Detection – changing hysteresis thresholds

Increasing the high threshold reduces the 
number of edges
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Canny Edge Detection – changing the smoothing

Increasing sigma reduces the number of 
returned edges and makes these poorly
localized
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Line Detection: Hough
Transform
Extracting Line Equations From Edges



IACV, UEM Maputo, Boracchi

Line Detection is Important
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Line Detection: The problem

Finding all the lines passing through
points in (a binary) image
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Line Detection: The problem

Finding all the lines passing through
points in (a binary) image

Finding lines means

• Having an analytical expression for 
each line

• Estimating its direction, length

• Thus, clustering points belonging to the 
same segment
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Line Detection: The problem

Brut-force attempt: 

Given 𝑛𝑛 points in a binary image, find subsets that lie on straight lines

• Compute all the lines passing 
through any pair of points

• Check subsets of points that
belong / are close to these lines
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Line Detection: The problem

Brut-force attempt: 

This requires computing

• 𝑛𝑛 𝑛𝑛−1
2

straight lines

• 𝑛𝑛 𝑛𝑛 𝑛𝑛−1
2

comparisons

• Computationally prohibitive task 
in all but the most trivial
applications ∼ 𝑛𝑛3
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Hough Transform

Identify lines in the “parameter space” i.e. in the space of the parameters 
identifying lines (𝑚𝑚, 𝑞𝑞). Let a straight line be:

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑞𝑞
Now, for a given point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), the equation 𝑞𝑞 = −𝑥𝑥𝑖𝑖𝑚𝑚 + 𝑦𝑦𝑖𝑖 in the 
variables 𝑚𝑚, 𝑞𝑞 denotes the star of lines passing through (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Key intuition: 
𝑞𝑞 = −𝑥𝑥𝑖𝑖𝑚𝑚 + 𝑦𝑦𝑖𝑖

Can be also seen as the equation of a straight line in 𝑚𝑚, 𝑞𝑞 in the 
parameter space
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Line Intersections in the parameter space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

𝑥𝑥

𝑦𝑦

𝑚𝑚

𝑞𝑞

𝑞𝑞 = −𝑥𝑥1𝑚𝑚 + 𝑦𝑦1

Point space Parameter space

The set of all the 
parameters of the star 
of lines in (𝑥𝑥1,𝑦𝑦1) is a 

straight line



IACV, UEM Maputo, Boracchi

Line Intersections in the parameter space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

𝑥𝑥

𝑦𝑦

𝑚𝑚

𝑞𝑞

𝑞𝑞 = −𝑥𝑥1𝑚𝑚 + 𝑦𝑦1

𝑞𝑞 = −𝑥𝑥2𝑚𝑚 + 𝑦𝑦2

Point space Parameter space

The two straight lines in the parameter
space intersect in a point, 

corrisponding to a line passing to both
𝑥𝑥1,𝑦𝑦1 and (𝑥𝑥2,𝑦𝑦2)
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Line Intersections in the parameter space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

𝑥𝑥

𝑦𝑦

𝑚𝑚

𝑞𝑞

𝑞𝑞 = −𝑥𝑥1𝑚𝑚 + 𝑦𝑦1

𝑞𝑞 = −𝑥𝑥2𝑚𝑚 + 𝑦𝑦2

�𝑚𝑚, �𝑞𝑞 such that 𝑦𝑦 = �𝑚𝑚𝑥𝑥 + �𝑞𝑞 passes 
through both (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2)

Point space Parameter space
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Intersections in the parameter space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

𝑥𝑥

𝑦𝑦

𝑚𝑚

𝑞𝑞

𝑞𝑞 = −𝑥𝑥1𝑚𝑚 + 𝑦𝑦1

𝑞𝑞 = −𝑥𝑥2𝑚𝑚 + 𝑦𝑦2

�𝑚𝑚, �𝑞𝑞 such that 𝑦𝑦 = �𝑚𝑚𝑥𝑥 + �𝑞𝑞 passes 
through both (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2)

Idea: 
- associate to each point a straight line in 

the parameter space
- Identify the intersections in the parameter

space as the lines in the point space
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Intersections in the parameter space

(𝑥𝑥1,𝑦𝑦1)

(𝑥𝑥2,𝑦𝑦2)

𝑥𝑥

𝑦𝑦

𝑚𝑚

𝑞𝑞

𝑞𝑞 = −𝑥𝑥1𝑚𝑚 + 𝑦𝑦1

𝑞𝑞 = −𝑥𝑥2𝑚𝑚 + 𝑦𝑦2

�𝑚𝑚, �𝑞𝑞 such that 𝑦𝑦 = �𝑚𝑚𝑥𝑥 + �𝑞𝑞 passes 
through both (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2)

In practice:
- Consider a discretized parameter space
- Accumulates all the discrete straight lines
- Find the local maxima in the parameter

space
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Hough Transform

Identify lines in the “parameter space” i.e. in the space of the parameters 
identifying lines.

𝑞𝑞 = −𝑥𝑥𝑖𝑖𝑚𝑚 + 𝑦𝑦𝑖𝑖 , ∀(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
Core Idea:

• Discretize the parameter space where 𝑚𝑚, 𝑞𝑞 live 

• Accumulate the consensus in the parameter space by summing +1 at
those bins where a straight line passess through

• Locate local maxima in the accumulator space

Major issue: 𝑚𝑚 goes to infinity at vertical lines!
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New Parametrization for Hough Transform

There is a more convenient way of expressing a strainght line for this
purpose: 

𝑥𝑥 cos 𝜃𝜃 + 𝑦𝑦 sin 𝜃𝜃 = 𝜌𝜌

Where 𝜌𝜌,𝜃𝜃 , 𝜌𝜌 ∈ −𝐿𝐿, 𝐿𝐿 , 𝜃𝜃 ∈ −𝜋𝜋
2

, 𝜋𝜋
2

𝜌𝜌
𝜃𝜃

Same as before: a line in the image space 
is a point in parameter Hough space.
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New parametrization of straight lines

Gonzalez and Woods «Digital image Processing», Prentice Hall;, 3° edition
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Hough Transform

The Hough transform identifies through an optimized voting procedure the 
most represented lines

The voting procedure is performed in the «accumulator space» which is a 
grid in 𝜌𝜌,𝜃𝜃 -domain, for all the possible values.

From the Accumulator space we then extract local maxima, namely pairs 
𝜌𝜌,𝜃𝜃 corresponding to lines passing through most of points

What is the maximum size of the domain?
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Hough Transform: the algorithm

Slide credit: S. Seitz

Initialize H[d,θ]=0

for each edge point (x,y) in the image:

  for θ in range(θmin,θmax):

    pho = x cos(θ) - y sin(θ)

    H[d,θ]+=1

Find the value(s) of (d,θ) where H[d,θ] is maximum

The detected line in the image is given by
d = x cos(θ) - y sin(θ)

𝜌𝜌
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Hough Transform

By Daf-de - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1121165
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Where is the facemask in H?
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What if we take more edges?
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Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any
line intersecting the 𝐻𝐻 × 𝑊𝑊 image?

𝜌𝜌

𝜃𝜃
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Size of the Accumulator Space

What are the maximum sizes of the accumulator space to represent any
line intersecting the 𝐻𝐻 × 𝑊𝑊 image?

It is the diagonal, so 𝐻𝐻2 + 𝑊𝑊2

𝜌𝜌

𝜃𝜃
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Bin size in the accumulator: an important parameter

How large are the bins in the accumulator?

• Too small: many weak peaks due to noise

• Just right: one strong peak per line, despite noise

• Too large:

• poor accuracy in locating the line

• many votes from clutter might end up in the same bin

A solution:

• keep bin size small but also vote for neighbors in the accumulator 
(this is the same as “smoothing” the accumulator image)
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Extension

From the edge detection algorithm, we know the direction of the gradient 
for each edge pixel

Remember how that edge direction is orthogonal to gradient direction

We can make sure an edge pixel only votes for lines that have (almost) 
the direction of the edge!

• Reduces the computation time 

• Reduces the number of useless votes (better visibility of maxima 
corresponding to real lines)
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Hough Transform

The approach is not only limited to lines, but rather to any parametric 
model that we are able to fit

- Circles can be fit in a 3d accumulator space

It is quite robust to noise
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Hough Transform For Circles

slide Credits Alessandro Giusti, USI
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Hugh Transform for Circles

1. Every edge point casts votes for all circles that are compatible with it

2. We choose circles that accumulated a lot of votes
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How do we parametrize circles?

𝑥𝑥 − 𝑎𝑎 2 + 𝑦𝑦 − 𝑏𝑏 2 = 𝑟𝑟2

Center (𝑥𝑥 = 𝑎𝑎,𝑦𝑦 = 𝑏𝑏) and radius 𝑟𝑟 : 3 degrees of freedom

If we assume 𝑟𝑟 known, the Hough space is 2D:
• 𝑎𝑎: 𝑥𝑥 coordinate of circle center

• 𝑏𝑏: 𝑦𝑦 coordinate of circle center

The role of (𝑎𝑎, 𝑏𝑏) and (𝑥𝑥,𝑦𝑦) are interchangeable, thus:

One point in image space maps to a circle in Hough space
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Hough space for circles with known radius

Slide credit: K. Grauman
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Hough space for circles with unknown radius

Slide credit: K. Grauman

One point in image space maps to...
a cone in Hough space
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Hough space for circles with unknown radius

Slide credit: K. Grauman
When the radius is zero 𝑎𝑎, 𝑏𝑏 = (𝑥𝑥,𝑦𝑦)
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If we know the gradient direction...

Slide credit: K. Grauman

When increasing the radius, the center can only live 
in a line, thus the linear relation between 𝒂𝒂,𝒃𝒃
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Hugh Transform for Circles

Initialize H accumulator to zeros

For every edge pixel (x,y):

  For each possible radius value r:

    For each possible gradient direction θ:

      a = x – r cos(θ) // column

      b = y + r sin(θ) // row

      H[a,b,r] += 1
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An example

Accumulator for radius equal to radius of a penny

Slide credit: K. Grauman

maximum

Image Edges Accumulator for radius=penny
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An example

Accumulator for radius equal to radius of a quarter

Slide credit: K. Grauman

maximum

Image Edges Accumulator for radius=quarter

not a maximum
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Conclusions

Advantages
• All points are processed independently, so the algorithm can cope with 

occlusions and gaps

• Voting algorithms are robust to clutter, because points not corresponding to any 
model are unlikely to contribute consistently to any single bin

• Can detect multiple instances of a model in a single pass

Disadvantages
• Only suitable for models with few parameters

• Must filter out spurious peaks in hough accumulator

• Quantization of hough space is tricky
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Image Segmentation
(Unsupervised) 
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Image Segmentation

Goal: identify groups of pixel that “go together”

-Group together similar-looking pixel for efficiency

-Separate images into coherent objects

One way of looking at segmentation is clustering
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Problem Formulation: Image Segmentation

Given an image 𝐼𝐼 ∈ ℝ𝑅𝑅 × 𝐶𝐶 × 3, having as domain 𝒳𝒳, the goal of image 
segmentation consists in estimating a partition 𝑅𝑅𝑖𝑖 such that

�
𝑖𝑖

𝑅𝑅𝑖𝑖 = 𝒳𝒳

and 𝑅𝑅𝑖𝑖 ∩ 𝑅𝑅𝑗𝑗 = ∅, 𝑖𝑖 ≠ 𝑗𝑗

There are two types of sementation:

• Unsupervised (what we address here)

• Supervised (or Semantic)
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Unsupervised Segmentation

Segments 𝑅𝑅𝑖𝑖 are 

• typically connected

• contain pixels having similar intensities

• In practice, we associate to each set an identifier
(or label) which has no pre-defined meaning.

Clustering is described by a function
𝛿𝛿: 𝒳𝒳 → ℕ

Mapping each pixel to the identifier of the 
associated region

Segments or «Superpixels» represent a more 
compact description of the entire image

Achanta, et al SLIC superpixels
compared to state-of-the-art 

superpixel methods. TPAMI 2012
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Semantic Segmentation

Assign to each pixel of an image 𝐼𝐼 ∈ ℝ𝑅𝑅 × 𝐶𝐶 × 3:

• a label {𝑙𝑙𝑖𝑖} from a fixed set of categories 
Λ = {"wheel", "cars", …, "castle", "baboon"}, 

𝐼𝐼 → 𝑆𝑆 ∈ Λ𝑅𝑅 × 𝐶𝐶

where 𝑆𝑆 𝑥𝑥,𝑦𝑦 ∈ Λ denotes the class associated to the pixel (𝑥𝑥,𝑦𝑦)

• segments contain pixels referring to the same object. 

• This requires annotations and is typically carried out by neural
networks

• Label set has a predefined meaning
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Semantic Segmentation

Zheng et al. “Conditional Random Fields as Recurrent Neural Networks”, ICCV 2015
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Unsupervised Segmentation by Clustering
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Image Segmentation as Clustering

The most straightforward approach to unsupervised Image Segmentation
consists in clustering image pixels or image intensities

Clustering: grouping together similar data points and represent them with 
a single token.

Challenges:

• What makes to points/images/patches similar?

• How do we compute overall grouping from pairwise similarities?



IACV, UEM Maputo, Boracchi

Why clustering?

Summarizing data

Counting

Prediction

Segmentation
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How to cluster?

1.Agglomerative clustering: start with each point at its own cluster and 
iteratively merge the clusters.

2.K-means clustering: Iteratively re-assign points to cluster

3.Mean shift: estimates modes of the probability distribution functions
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Clustering: distance measures

Clustering is an unsupervised learning method. Given a series of items, 
the goal is to group them into clusters.

We need:

-A pairwise distance (or a similarity)

-(sometimes) the desired number of clusters.
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Commonly used measures

Euclidean Distance

Cosine similarity
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A (trivial) case study

Slide Credits: cs131 Niebles and Krishna

Here image pixels are very easy 
to gather in clusters according

to their intensities.

Here the problem becomes
more difficult and it is

definitively challenging on 
natural images
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A (trivial) case study: Intensities

Slide Credits: cs131 Niebles and Krishna



IACV, UEM Maputo, Boracchi

Clustering algorithms

Here are a few clustering algorithms
• K-Means Clustering
• Mean-shift Clustering
• Agglomerative Clustering
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K-Means Clustering

Undelying assumption: we know 𝐾𝐾, the number of centers 

Goal: define a mapping 𝛿𝛿: 𝐼𝐼 → ℕ those minimizing Sum of Squared 
Distance (SSD) between points belonging to the cluster 𝑅𝑅𝑖𝑖 and the 
nearest cluster center 𝑐𝑐𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝑅𝑅𝑖𝑖

�
𝑥𝑥∈𝑅𝑅𝑖𝑖

𝑥𝑥 − 𝑐𝑐𝑖𝑖 2
2

Being 𝑐𝑐𝑖𝑖 the center of the cluster 𝑅𝑅𝑖𝑖.
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The Goal of K-Means

Create clusters that minimize the variance in data, given the clusters. 

But this is a “chicken and egg” problem

-We need centers to compute memberships

-We need memberships to compute center
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The Goal of K-means, reformulatead

Define a mapping 𝛿𝛿 and the centroid of each cluster 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐾𝐾
such that

𝛿𝛿∗, 𝑐𝑐𝑖𝑖 ∗ = argmin
𝛿𝛿,{𝑐𝑐𝑖𝑖}

�
𝑗𝑗

𝑁𝑁

�
𝑖𝑖

𝐾𝐾

𝛿𝛿 𝑥𝑥𝑗𝑗 , 𝑐𝑐𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑖𝑖
2

Being 

𝛿𝛿 𝑥𝑥𝑗𝑗 , 𝑐𝑐𝑖𝑖 = �1 if 𝑥𝑥𝑗𝑗 ∈ 𝑅𝑅𝑖𝑖 having center 𝑐𝑐𝑖𝑖
0 otherwise

The above optimization is difficult to solve, so we opt for a greedy 
solution that alternates between the optimization of 𝛿𝛿 and {𝑐𝑐𝑖𝑖}
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K-Means algorithm

1. Randomly Initialize the cluster centers 𝑐𝑐𝑘𝑘 𝑡𝑡 = 0
2. Assign each point 𝑥𝑥𝑗𝑗 to the cluster 𝑅𝑅𝑖𝑖 of the closest centroid. This 

corresponds to optimizing

𝛿𝛿∗ = argmin
𝛿𝛿

�
𝑗𝑗

𝑁𝑁

�
𝑖𝑖

𝐾𝐾

𝛿𝛿 𝑥𝑥𝑗𝑗 , 𝑐𝑐𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑖𝑖
2

3. Update cluster centers as the means of its points

𝑐𝑐𝑖𝑖 ∗ = argmin
{𝑐𝑐𝑖𝑖}

�
𝑗𝑗

𝑁𝑁

�
𝑖𝑖

𝐾𝐾

𝛿𝛿 𝑥𝑥𝑗𝑗 , 𝑐𝑐𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝑐𝑐𝑖𝑖
2

4. Update t += 1 and go back to (2).
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K-means Clustering Illustration

Slide Credits: cs131 Niebles and Krishna
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Summary: K-Means clustering

PROS

Finds cluster centers that minimize 
conditional variance -> good 
representation

Simple, fast and easy to implement

CONS

Need to choose K

Sensitive to outliers

Prone to local minima

All clusters have the same 
parameters
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The Choice of K
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The Choice of K
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Remarks

The average Intensity Image is
obtained by associating to each region
𝑅𝑅𝑖𝑖 the average intensity of pixels
belonging to 𝑅𝑅𝑖𝑖
This can be seen as an adaptive form
of color quantization
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Clustering Inputs
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Feature space

In our previous examples, 
we have been showing a 
1-D feature space
(intensity only).

But one can look at more 
various features!

𝒙𝒙𝒊𝒊 = 𝐼𝐼 𝑟𝑟, 𝑐𝑐 ∈ ℝ
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Colors
Instead of using only the intensities, 
we can use the colors of each pixel: 
this will lead to a 3-D feature space.

𝒙𝒙𝒊𝒊 =
𝑅𝑅 𝑟𝑟, 𝑐𝑐
𝐺𝐺 𝑟𝑟, 𝑐𝑐
𝐵𝐵 𝑟𝑟, 𝑐𝑐

∈ ℝ3

Different color spaces can be used 
(XYZ, CIELUV, …)

Still no notion of locality

Slide Credits: cs131 Niebles and Krishna
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Intensity+position

We can use both the intensity and the position to group pixel.

This will encode similarity and proximity

𝒙𝒙𝒊𝒊 =

𝑅𝑅 𝑟𝑟, 𝑐𝑐
𝐺𝐺 𝑟𝑟, 𝑐𝑐
𝐵𝐵 𝑟𝑟, 𝑐𝑐
𝑟𝑟
𝑐𝑐

∈ ℝ5
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Intensity+position

What’s wrong with that?
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Intensity+position

We can use both the intensity and the position to group pixel.

This will encode similarity and proximity

𝒙𝒙𝒊𝒊 =

𝑅𝑅 𝑟𝑟, 𝑐𝑐
𝐺𝐺 𝑟𝑟, 𝑐𝑐
𝐵𝐵 𝑟𝑟, 𝑐𝑐
𝛼𝛼𝑟𝑟
𝛼𝛼𝑐𝑐

∈ ℝ5

The pixel location 𝑟𝑟, 𝑐𝑐 when expressed in pixel 
coordinate assume values that are way larger than 
the other components!

They dominate in the computation of the distance, 
that’s why we get to Voronoi partitions

We need to compensate for this and either use 
coordinate relative to the image size, or scale these 
by a weight 𝛼𝛼
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Intensity+position: 2 step procedure

Use a first step quantization to remove bright
background, then segment only the dark parts of the 
image.
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Many others

Gradient (to encode shapes)

Filter bank responses (to encode textures following similar directions)

Any combination of these features!

...
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Inizialization

K means can suffer of poor initialization

K-means++

• Choose 𝐾𝐾 clusters at random

• Resample the position of other 𝐾𝐾 centroids using probability
proportional to 𝑥𝑥 − 𝑐𝑐𝑖𝑖 2 being 𝑐𝑐𝑖𝑖 the closest center

• Run 𝑘𝑘 −means

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding. Stanford.
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Back to Clustering..
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Clustering algorithms

Here are a few clustering algorithms
• K-Means Clustering
• Mean-shift Clustering
• Agglomerative Clustering



IACV, UEM Maputo, Boracchi

Mean-shift clustering

The algorithm:

1. Initialize random seeds and search windows 𝑊𝑊
2. Calculate center of gravity (“mean”) of each 𝑊𝑊
3. Shift the search windows to their means 

4. Repeat (2) and (3) until convergence.

In practice

• Build a tessellation of the space and run the procedure in parallel

• At the end, a cluster will contain all the points in the basin of 
attraction of a mode.
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Mean-shift segmentation

1.Find features (e.g.,intensities, colors)

2.Initialize windows at individual pixel location

3.Perform mean shift for each windows

4.Merge windows that end up near the same “peak” (or mode)
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To Summarize

Demirović, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.

The algorithm is initialized
in each point to be 
segmented

Each pixel becomes a 5d 
vector, having the spatial
and chromatic (Luv) 
components

The label is the position of 
the point of convergence
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MS Filtering!

Demirović, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.

The algorithm is initialized
in each point to be 
segmented

Each pixel becomes a 5d 
vector, having the spatial
and chromatic (Luv) 
components

To each point, we associate 
the destitination (it’s
filtering!)



IACV, UEM Maputo, Boracchi

Segmentation

Demirović, Damir. "An implementation of the mean shift algorithm." Image Processing On Line 9 (2019): 251-268.
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Summary: Mean-Shift clustering

PROS

• Model-free (no assumption on 
data clustes)

• Just a single parameter
(windows size ℎ)

• Find a variable number of modes

• Robust to outliers

CONS

• Window-size selection is non-
trivial

• Output depends on ℎ
• Computationally expensive

• Does not scale well with 
dimension of feature space
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In principle this procedure 
should be repeated and 
restarted in each point 
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The basin of attraction of a mode, i.e. data 
points visited by all the mean shift procedures 
converging to that mode, automatically separate 
a cluster of arbitrary shape.
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Clustering algorithms

Here are a few clustering algorithms
• K-Means Clustering
• Mean-shift Clustering
• Agglomerative Clustering
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Agglomerative Clustering

1.Every point is its own cluster

2.Find most similar pair of clusters

3.Merge it into a “parent” cluster

4.Repeat (2) until only one cluster is left.

Unfortunately, we know how to 

define distances between 

points, but not distances
between group of points.
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Distance between clusters

• Single linkage (minimum distance)

• Complete linkage (maximum distance)

• Average distance

• Many others...

How many clusters?

Threshold based on

Number of clusters

Distance between merges

1

2

3



IACV, UEM Maputo, Boracchi

Summary: agglomerative clustering

PROS

• Simple to implement

• Clusters have adaptive shapes

• Hierarchy of clusters

• No need to specify the number of 
clusters in advance

CONS

• May lead to unbalanced clusters
• We need to arbitrarily select a cut-

point or a threshold
• Prone to local minima
• Does not scale well ( O(n3) )
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A Few Relevant Segmentation Algorithms
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Watershed

Idea: find segments as "catchment basins" or "watershed ridge lines" in an 
image by treating it as a surface where light pixels represent high 
elevations and dark pixels represent low elevations. 

The basic idea consisted of placing a water source in each regional 
minimum in the relief, to flood the entire relief from sources, and build 
barriers when different water sources meet. 

The resulting set of barriers constitutes a watershed by flooding. A 
number of improvements, collectively called Priority-Flood, have since 
been made to this algorithm. [Wikipedia, May 2022]

Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol. 38, July 1994, pp. 113-125.

Serge Beucher and Christian Lantuéj workshop on image processing, real-time edge and motion 
detection (1979). http://cmm.ensmp.fr/~beucher/publi/watershed.pdf

http://cmm.ensmp.fr/%7Ebeucher/publi/watershed.pdf
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Watershed

The watershed transform can be used to segment contiguous regions of 
interest into distinct objects.

However, this rather simplistic intuition cannot straightforwardly be used 
over images, it requires some preprocessing to let this work. 

It has the major advantage of operating without having as input the 
number of clusters

Meyer, Fernand, "Topographic distance and watershed lines,” Signal Processing , Vol. 38, July 1994, pp. 113-125.

Serge Beucher and Christian Lantuéj workshop on image processing, real-time edge and motion 
detection (1979). http://cmm.ensmp.fr/~beucher/publi/watershed.pdf

http://cmm.ensmp.fr/%7Ebeucher/publi/watershed.pdf
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Watershed illustrated

https://it.mathworks.com/help/images/ref/watershed.html
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Watershed illustrated

https://it.mathworks.com/help/images/ref/watershed.html
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Watershed Illustrated

https://it.mathworks.com/help/images/ref/watershed.html
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Watershed is very sensitive 
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Watershed is very sensitive 

Some pre-processing can mitigate these problems, like eroson to make dark and flat
regions larger and smoother
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Watershed is very sensitive 

… also making can improve the performance. Note that watershed has operated correctly
in the top left cells who were next to each other
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SuperPixels

Superpixel algorithms group pixels into perceptually 
meaningful atomic regions, which can be used to replace 
the rigid structure of the pixel grid.

Superpixels (i.e. connected regions 𝑅𝑅𝑖𝑖) should

- Adhere to image boundaries

- Be fast to compute, memory efficient, simple to use

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012
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SLIC: Simple Linear Iterative Clustering

A simple, yet effective and efficient superpixel algorithm.

• Based on 𝑘𝑘 −means, requires 𝐾𝐾
• Operates on intensity+location features, on Lab color spae

𝑥𝑥𝑖𝑖 = 𝐿𝐿 𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑎𝑎 𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑏𝑏 𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑐𝑐𝑖𝑖 ′

• Centers initialized over a regular grid of step 𝑁𝑁/𝑘𝑘, to promote
superpixels of same area (locations are adjusted to avoid edges)

• Pixels are associated to clusters belonging to a search neighborhood

• Standard centroid update

• Post-processing to enforce connectivity, re-assigning disjoint pixels to 
the closest cluster

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 2012
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