CLASS DISTRIBUTION MONITORING FOR CONCEPT DRIFT DETECTION Diego Stucchi, Luca Frittoli, Giacomo Boracchi

CONCEPT DRIFT DETECTION

Detecting changes in multivariate annotated datastreams:

 $\{(x_t, y_t)\}_t \text{ where } x_t \in \mathbb{R}^d, y_t \in \{1, ..., M\}$

Typical approaches:

- Monitor the **distribution** of x_t ignoring class labels
- Monitor the **error rate** of a classifier (e.g., [4]) ignoring drifts having little impact on classification

Challenges:

- Monitor the data distribution taking into account class labels
- Online monitoring at a controlled Average Run Length (ARL₀), i.e., the expected time before a false alarm:

EXPERIMENTS

We test our solution on the real-world INSECTS dataset [3]

Empirical ARL₀

	U				
	Methods (target ARL ₀)				
Concept	ECDD [4]	Scan-B [5]	QT-EWMA [2]	CDM (ours)	
	(400)	(300)	(375)	(375)	
Α	376.51	382.08	379.10	375.44	
B	371.07	384.56	361.78	374.47	
C	373.16	381.65	371.66	365.32	
D	374.14	387.17	367.18	369.94	
E	371.82	376.28	375.10	374.64	
F	377.67	374.22	375.58	371.87	

 $ARL_0 = \mathbb{E}[t^*], t^* = detection time$

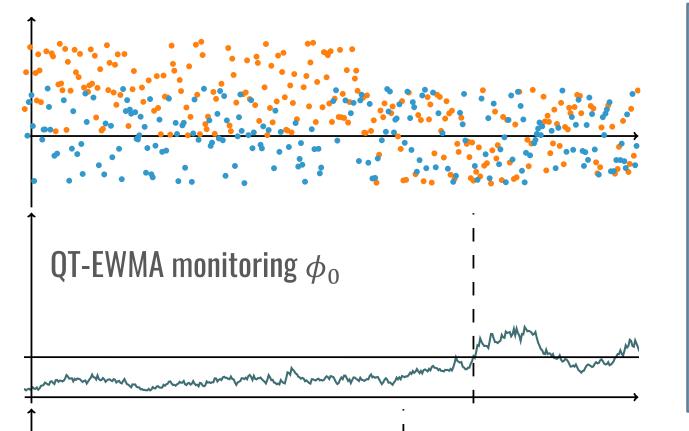
Motivation: a **costly re-training** might be necessary after a concept drift, so **false alarms** must be kept under **control**.

CLASS DISTRIBUTION MONITORING (CDM)

Idea: monitor the class-conditional distributions ϕ_0^m defined by

 $\mathbb{P}_{\phi_0^m}(x_t) = \mathbb{P}_{\phi_0}(x_t \mid y_t = m)$

- model each class-conditional distribution by a QuantTree histogram [1]
- monitor samples from each class by QT-EWMA [2], an online and nonparametric change-detection algorithm



CDM statistic: $\tilde{T}_t = T_{t_m}^m$ where $m = y_t$ and T^m is the **QT-EWMA** statistic computed on class m.

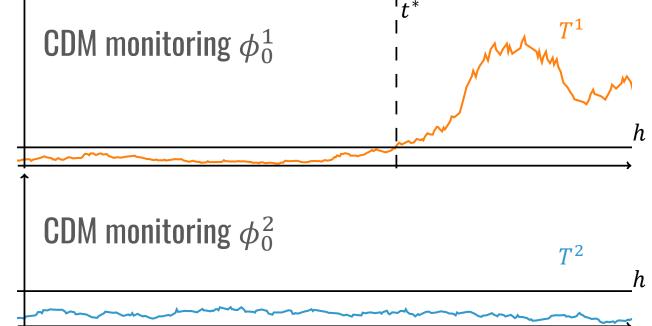
A drift is detected when $T_{t_m}^m > h_{t_m}$ where $\{h_t\}$ are the QT-EWMA thresholds guaranteeing the target ARL₀ CDM and QT-EWMA control the ARL_0 more accurately than the alternatives

Detection Delay

Drifted Classes	<u>ECDD [4]</u>	<u>Scan-B [5]</u>	<u>QT-EWMA [2]</u>	<u>CDM (ours)</u>
1	207.98	212.53	267.73	195.45
2	245.85	162.58	195.44	124.92
3	264.27	224.99	278.57	204.00
4	224.91	235.87	265.96	196.74
1, 2	198.17	131.71	174.80	114.44
1, 3	172.62	169.87	223.50	160.98
1, 4	165.77	163.63	221.66	145.82
2, 3	163.66	126.56	167.55	112.18
2, 4	176.53	119.41	154.95	106.49
3, 4	210.04	169.88	218.90	153.51
1, 2, 3	139.29	115.01	152.91	103.60
1, 2, 4	148.03	103.24	141.09	98.89
1, 3, 4	144.81	134.83	183.41	131.38
2, 3, 4	132.36	96.92	136.90	98.57
1, 2, 3, 4	122.38	88.86	128.04	91.44
Avg. rank	2.416	2.356	3.524	1.704

CDM outperforms the alternatives, particularly when the change affects only a few classes

Concept A ($p_0 = 0.227$)



Advantages:

- **CDM is faster** than QT-EWMA in detecting the drift, especially when it affects a subset of classes
- CDM indicates which class triggered the detection

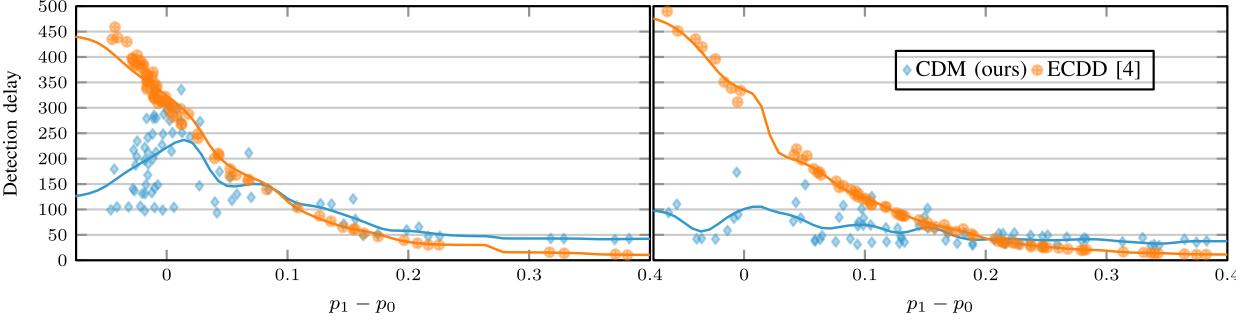
CONTROL OF THE ARL₀

We demonstrate that the CDM maintains the same ARL_0 as the QT-EWMA monitoring each class-conditional distribution.

Proposition. Let the CDM statistic be defined by the QT-EWMA statistic T_t , and let $\{h_t\}$ be thresholds such that:

$$\mathbb{P}(T_t > h_t \mid T_k \le h_k \ \forall k < t) = \alpha = \frac{1}{ARL_0}$$

Then, CDM yields the same ARL₀ as QT-EWMA.



CDM achieves **excellent detection delays**, outperforming ECDD when the drift has **little impact on classification error** (which happens quite often!)

CONCLUSIONS

- **CDM**: a new approach to concept drift detection by **monitoring classconditional distributions**
- Nonparametric monitoring controlling the ARL₀ thanks to the properties of QT-EWMA
- State-of-the-art concept drift detection performance

REFERENCES

[1] Boracchi, Carrera, Cervellera, Macciò *"QuantTree: histograms for change detection in multivariate data streams"* ICML 2018

[2] Frittoli, Carrera, Boracchi *"Change detection in multivariate datastreams controlling false alarms"* ECML-PKDD 2021

[3] Souza, dos Reis, Maletzke, Batista *"Challenges in benchmarking stream learning algorithms with real-world data"* Data Mining and Knowledge Discovery 2020

[4] Ross, Adams, Tasoulis, Hand *"Exponentially weighted moving average charts for detecting concept drift"* Pattern Recognition Letters 2012

You can contact us by email at {diego.stucchi, luca.frittoli, giacomo.boracchi}@polimi.it Our code is available at